Física, perguntado por MateusAmaral5757, 1 ano atrás

Questão n° 5SUm feixe de luz apresenta um comprimento de onda igual a 400 nm quando se propaga no vácuo. Ao incidir em um determinado meio X, sua velocidade passa a ser 40% menor que a velocidade de propagação da luz no vácuo. O índice de refração desse meio X e o comprimento de onda do feixe no meio X são, respectivamente,oDado: velocidade da luz no vácuo igual a 3,0 . 10 m/s.a)4/3 ; 240 nmb)4/3 ; 300 nmc)5/3 ; 240 nmd)5/3 ; 300 nme)3/2 ; 300 nm

Anexos:

Soluções para a tarefa

Respondido por vchinchilla22
16

Olá!


Do enunciado temos:


- Comprimento de onda quando se propaga no vácuo λ₀ = 400 nm.

- Sua velocidade passa a ser 40% menor que a velocidade de propagação da luz no vácuo, ou seja:


 v = \frac{40\% * 3 * 10^{8}}{100 \%} = 0,12*10^{9} m/ s


Como é 40% menor, temos que:


 v =   3 * 10^{8} - 0,12 * 10^{9}\\ v = 180 *10^{6} m/ s


Agora sabemos que a velocidade da onda é dada por:


 v = \frac{velocidade \; da\; luz\, no \; vacuo}{Indice_{refra.}} = \frac{3 *10^{8}}{n}


Isolamos o índice de refração desse meio:


 n = \frac{ 3 * 10^{8}}{v}  = \frac{ 3 * 10^{8}}{180 * 10^{6}}


 n =  1,66 = \frac{5}{3}


Agora podemos calcular o comprimento de onda do feixe no meio, sabendo que sua formula é:


 \lambda = \frac{\lambda_{0}}{n}


 \lambda =\frac{400 * 10 ^{-9}}{\frac{5}{3}}  = 240 mn


Assim a alternativa correta é: c) 5/3 e 240 mn

Perguntas interessantes