Questão Matemática. Alguém se habilita??
Anexos:
![](https://pt-static.z-dn.net/files/d4d/2e140ac0e9cf3d78d8ceddbc6b45d2bb.jpg)
Soluções para a tarefa
Respondido por
1
Resolver a equação
![\dfrac{2}{\sqrt{98}}-\dfrac{2}{\sqrt{32}}=a\sqrt{2} \dfrac{2}{\sqrt{98}}-\dfrac{2}{\sqrt{32}}=a\sqrt{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B2%7D%7B%5Csqrt%7B98%7D%7D-%5Cdfrac%7B2%7D%7B%5Csqrt%7B32%7D%7D%3Da%5Csqrt%7B2%7D)
Decompondo os números dentro das raízes quadradas em seus fatores primos:
![\bullet\;\;98=2\cdot 7^{2}\\ \\ \Rightarrow\;\;\sqrt{98}=\sqrt{2\cdot 7^{2}}\\ \\ \Rightarrow\;\;\sqrt{98}=\sqrt{2}\cdot \sqrt{7^{2}}\\ \\ \Rightarrow\;\;\sqrt{98}=\sqrt{2}\cdot 7\\ \\ \Rightarrow\;\;\sqrt{98}=7\sqrt{2}\\ \\ \\ \bullet\;\;32=2\cdot 2^{4}\\ \\ 32=2\cdot (2^{2})^{2}\\ \\ \Rightarrow\;\;\sqrt{32}=\sqrt{2\cdot (2^{2})^{2}}\\ \\ \Rightarrow\;\;\sqrt{32}=\sqrt{2}\cdot\sqrt{(2^{2})^{2}}\\ \\ \Rightarrow\;\;\sqrt{32}=\sqrt{2}\cdot 2^{2}\\ \\ \Rightarrow\;\;\sqrt{32}=4\sqrt{2} \bullet\;\;98=2\cdot 7^{2}\\ \\ \Rightarrow\;\;\sqrt{98}=\sqrt{2\cdot 7^{2}}\\ \\ \Rightarrow\;\;\sqrt{98}=\sqrt{2}\cdot \sqrt{7^{2}}\\ \\ \Rightarrow\;\;\sqrt{98}=\sqrt{2}\cdot 7\\ \\ \Rightarrow\;\;\sqrt{98}=7\sqrt{2}\\ \\ \\ \bullet\;\;32=2\cdot 2^{4}\\ \\ 32=2\cdot (2^{2})^{2}\\ \\ \Rightarrow\;\;\sqrt{32}=\sqrt{2\cdot (2^{2})^{2}}\\ \\ \Rightarrow\;\;\sqrt{32}=\sqrt{2}\cdot\sqrt{(2^{2})^{2}}\\ \\ \Rightarrow\;\;\sqrt{32}=\sqrt{2}\cdot 2^{2}\\ \\ \Rightarrow\;\;\sqrt{32}=4\sqrt{2}](https://tex.z-dn.net/?f=%5Cbullet%5C%3B%5C%3B98%3D2%5Ccdot+7%5E%7B2%7D%5C%5C+%5C%5C+%5CRightarrow%5C%3B%5C%3B%5Csqrt%7B98%7D%3D%5Csqrt%7B2%5Ccdot+7%5E%7B2%7D%7D%5C%5C+%5C%5C+%5CRightarrow%5C%3B%5C%3B%5Csqrt%7B98%7D%3D%5Csqrt%7B2%7D%5Ccdot+%5Csqrt%7B7%5E%7B2%7D%7D%5C%5C+%5C%5C+%5CRightarrow%5C%3B%5C%3B%5Csqrt%7B98%7D%3D%5Csqrt%7B2%7D%5Ccdot+7%5C%5C+%5C%5C+%5CRightarrow%5C%3B%5C%3B%5Csqrt%7B98%7D%3D7%5Csqrt%7B2%7D%5C%5C+%5C%5C+%5C%5C+%5Cbullet%5C%3B%5C%3B32%3D2%5Ccdot+2%5E%7B4%7D%5C%5C+%5C%5C+32%3D2%5Ccdot+%282%5E%7B2%7D%29%5E%7B2%7D%5C%5C+%5C%5C+%5CRightarrow%5C%3B%5C%3B%5Csqrt%7B32%7D%3D%5Csqrt%7B2%5Ccdot+%282%5E%7B2%7D%29%5E%7B2%7D%7D%5C%5C+%5C%5C+%5CRightarrow%5C%3B%5C%3B%5Csqrt%7B32%7D%3D%5Csqrt%7B2%7D%5Ccdot%5Csqrt%7B%282%5E%7B2%7D%29%5E%7B2%7D%7D%5C%5C+%5C%5C+%5CRightarrow%5C%3B%5C%3B%5Csqrt%7B32%7D%3D%5Csqrt%7B2%7D%5Ccdot+2%5E%7B2%7D%5C%5C+%5C%5C+%5CRightarrow%5C%3B%5C%3B%5Csqrt%7B32%7D%3D4%5Csqrt%7B2%7D)
Voltando à equação, chegamos a
![\dfrac{2}{7\sqrt{2}}-\dfrac{2}{4\sqrt{2}}=a\sqrt{2} \dfrac{2}{7\sqrt{2}}-\dfrac{2}{4\sqrt{2}}=a\sqrt{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B2%7D%7B7%5Csqrt%7B2%7D%7D-%5Cdfrac%7B2%7D%7B4%5Csqrt%7B2%7D%7D%3Da%5Csqrt%7B2%7D)
Multiplicando os dois lados por
temos
![\dfrac{1}{\sqrt{2}}\cdot \left(\dfrac{2}{7\sqrt{2}}-\dfrac{2}{4\sqrt{2}} \right )=\dfrac{1}{\sqrt{2}}\cdot a\sqrt{2}\\ \\ \\ \dfrac{1\cdot 2}{7\cdot (\sqrt{2})^{2}}-\dfrac{1\cdot 2}{4\cdot (\sqrt{2})^{2}}=a\\ \\ \\ \dfrac{\diagup\!\!\!\! 2}{7\cdot \diagup\!\!\!\! 2}-\dfrac{\diagup\!\!\!\! 2}{4\cdot \diagup\!\!\!\! 2}=a\\ \\ \\ \dfrac{1}{7}-\dfrac{1}{4}=a\\ \\ \\ a=\dfrac{4}{28}-\dfrac{7}{28}\\ \\ \\ a=\dfrac{4-7}{28}\\ \\ \\ \boxed{\begin{array}{c} a=-\dfrac{3}{28} \end{array}} \dfrac{1}{\sqrt{2}}\cdot \left(\dfrac{2}{7\sqrt{2}}-\dfrac{2}{4\sqrt{2}} \right )=\dfrac{1}{\sqrt{2}}\cdot a\sqrt{2}\\ \\ \\ \dfrac{1\cdot 2}{7\cdot (\sqrt{2})^{2}}-\dfrac{1\cdot 2}{4\cdot (\sqrt{2})^{2}}=a\\ \\ \\ \dfrac{\diagup\!\!\!\! 2}{7\cdot \diagup\!\!\!\! 2}-\dfrac{\diagup\!\!\!\! 2}{4\cdot \diagup\!\!\!\! 2}=a\\ \\ \\ \dfrac{1}{7}-\dfrac{1}{4}=a\\ \\ \\ a=\dfrac{4}{28}-\dfrac{7}{28}\\ \\ \\ a=\dfrac{4-7}{28}\\ \\ \\ \boxed{\begin{array}{c} a=-\dfrac{3}{28} \end{array}}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5Ccdot+%5Cleft%28%5Cdfrac%7B2%7D%7B7%5Csqrt%7B2%7D%7D-%5Cdfrac%7B2%7D%7B4%5Csqrt%7B2%7D%7D+%5Cright+%29%3D%5Cdfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5Ccdot+a%5Csqrt%7B2%7D%5C%5C+%5C%5C+%5C%5C+%5Cdfrac%7B1%5Ccdot+2%7D%7B7%5Ccdot+%28%5Csqrt%7B2%7D%29%5E%7B2%7D%7D-%5Cdfrac%7B1%5Ccdot+2%7D%7B4%5Ccdot+%28%5Csqrt%7B2%7D%29%5E%7B2%7D%7D%3Da%5C%5C+%5C%5C+%5C%5C+%5Cdfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%7D%7B7%5Ccdot+%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%7D-%5Cdfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%7D%7B4%5Ccdot+%5Cdiagup%5C%21%5C%21%5C%21%5C%21+2%7D%3Da%5C%5C+%5C%5C+%5C%5C+%5Cdfrac%7B1%7D%7B7%7D-%5Cdfrac%7B1%7D%7B4%7D%3Da%5C%5C+%5C%5C+%5C%5C+a%3D%5Cdfrac%7B4%7D%7B28%7D-%5Cdfrac%7B7%7D%7B28%7D%5C%5C+%5C%5C+%5C%5C+a%3D%5Cdfrac%7B4-7%7D%7B28%7D%5C%5C+%5C%5C+%5C%5C+%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D+a%3D-%5Cdfrac%7B3%7D%7B28%7D+%5Cend%7Barray%7D%7D)
Decompondo os números dentro das raízes quadradas em seus fatores primos:
Voltando à equação, chegamos a
Multiplicando os dois lados por
Perguntas interessantes
Matemática,
1 ano atrás
História,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Música,
1 ano atrás
Sociologia,
1 ano atrás
Biologia,
1 ano atrás