Matemática, perguntado por macopereira, 1 ano atrás

Questão de análise combinatória:
Quantos números naturais ímpares com quatro algarismos distintos podem ser representados com os algarismos 0, 2, 4, 6, 7 e 8?
a) 360
b) 120
c) 60
d) 40

Anexos:

Usuário anônimo: O gabarito não condiz com a pergunta !
Usuário anônimo: De acordo com essa pergunta teremos 48 número.
walterpradosamp: a resposta e 48 4x4x3x1 = 48
Usuário anônimo: Isso ai ! :D

Soluções para a tarefa

Respondido por Nooel
2
Bom temos os algarismos:0,2,4,6,7,8 = 6 algarismos e queremos formar numeros de 4 algarismos distintos impares. 

_ _ _ _ 
         7
Ja usamos o 7 sobrando 5 algarismos 

para o primeiro algarismo temos 4 possibilidades pois não pode começar com 0, ja para o segundo temos 4 pois podemos usar o zero, e o terceiro temos 3 possibilidades ficando com.

N=4.4.3
N=48 numeros impares distintos. 


veja o esquema a seguir para entender.

Primeira casa  _ = temos os numeros 2,4,6,8 = 4 possibilidades 
Segunda _ = temos 0,2,6,4= 4 possibilidades considerando que ja usamos um numero na primeira casa.
terceira _= temos os numeros 0,2,6= 3 numeros 
Quarta _= temos apenas 1 possibilidade pois só temos o 7 impar 

Multiplicando minhas possibilidades 

N=4.4.3.1
N=48 Numeros diferentes e impares. 

Obs:

 O gabarito está errado!

Espero ter ajudado!

Usuário anônimo: Ótima resposta fera ! :)
Nooel: :D
Perguntas interessantes