Matemática, perguntado por oiee, 1 ano atrás

quero uma ajuda !! por favor!! obrigada!!!
a soma  de todos os numeros  de tres algarismos, não repetidos, que podem ser formados com os algarismos 1, 3 e 5 e;
a)734
b)1998
c)5322
d)1017
e)3994

Soluções para a tarefa

Respondido por jjuuhsousa
8
Os números que podem ser formados com tais algarismos sem repeti-los é:
135
153
351
315
531
513

Somando-os obtemos: 1998.
Alternativa correta é a letra b).


ronieremorais: e isso ai mesmo (y)
Respondido por dugras
1

Alternativa B. A soma de todos os números de três algarismos não repetidos com 1, 3 e 5 é 1998

Permutação

Quando temos um número p de elementos e queremos saber quais as maneiras de organizarmos esses elementos temos uma permutação.

A quantidade de permutações é dada por:

P = p!

P = 3!

P = 3 · 2 · 1 = 6

Temos apenas 6 possibilidades, sendo que duas possibilidades de cada número em cada posição. Ao efetuarmos a soma desses algarismos na casa das unidades, temos

2(1 + 3 + 5) = 2 · 9 = 18

Essa dezena vai para casa sequinte onde temos:

18 + 1 = 19

E essa dezena vai para a casa das centenas onde temos:

18 +. 1 = 19

Assim, se somarmos todos ficamos com 1998.

Veja mais sobre permutações em:

https://brainly.com.br/tarefa/20622320

https://brainly.com.br/tarefa/47719594

#SPJ2

Perguntas interessantes