Quem tiver tempo e poder me ajudar
Determine as funções.
Anexos:
luccasreis13:
AJUDOO
Soluções para a tarefa
Respondido por
1
2 -
A)
4.x² + 9 = 12.x 12 +-√0 ------> x1 = 12/ 8 => 3/2
4.x² - 12.x + 9 = 0 2.4 -------> x2 = 12/8 => 3/2
Δ = (-12)² - 4.4.9 => 0
Xv = -b/2.a => 12/2.4 => 3/2
Yv = -Δ/4.a => -0/4.4 => 0
Im(f(x)) = {3/2, 0 }
D(f(x)) = {x∈R/ x = 3/2}
B) x² = x +12 1+-√49 -----> x1 = 1+7/2 => 4
x²-x-12 = 0 2.1 ---------> x2 = 1-7/2 => -3
Δ = 1² - 4.1.-12 => 49
Xv = -b/2.a => 1/2.1 => 1/2
Yv = -Δ/4.a => -49/4.1 => -49/4
Im(f(x)) = {-3,1/2,4,-49/4}
D(f(x)) = {x ∈ IR/ -3 > x < 4}
C) 2.x² = -12.x-18 -12+-0 ---------> x1 = -12/4 = -3
2.x² + 12.x + 18 = 0 2.2 -------> x2 = -12/4 = -3
Δ = 12² -4.2.18 => 0
Xv= -b/2.a = -12/2.2 => -3
Yv = -Δ/4.a = -0/4.2 => 0
Im(f(x)) = {-3,0}
D(f(x)) = { x∈ R/ x = -3 }
D) x² +9= 4.x
x² -4.x + 9 = 0
Δ = (-4)² - 4.1.9 => -20
Im(f(x))= ⊅ IR
D(f(x)) = ⊅ IR
E) 25.x² = 20.x-4 20+-0 --------------- x1 = x2 = 2/5
25.x² - 20.x + 4 = 0 2.25
Δ = (-20)² - 4.25.4 => 0
Xv = -b/2.a = 20/2.25 => 2/5
Yv = -Δ/4.a => 0
Im(f(x)) = {2/5,0}
Dm(f(x)) = {x ∈ R/ x = 2/5}
F) 2.x = 15-x² -2+-√64 ----------> x1 = -2+8/2 => 3
x²+2.x - 15 = 0 2.1 ----------> x2 = -2 - 8/2 => -5
Δ = 4-4.1-15 => 64
Xv= -b/2.a => -2/2.1 => -1
Yv = -Δ/4.a => -64/4.1 => -16
Im(f(x)) = {-16,-5,-1,3}
D(f(x)) = { x ∈ R/ -5 < x < 3}
G) x²+3.x-6 = -8 -3+-√1 ---------> x1 = -1
x² + 3.x +2 = 0 2.1 --------> x2 = -2
Δ = 3² - 4.1.2 => 1
Xv = -b/2.a => -3/2.1 => -3/2
Yv = -Δ/4.a => -1/4.1 => -1/4
H) x²+x-7 = 5 -1 +- √49 --------------> x1 = -1-7/2 => -4
x²+x-12 = 0 2.1 ------------------> x2 = -1+7/2 => 3
Δ = 1² - 4.-12 => 49
Xv = -b/2.a => -1/2.1 => -1/2
Yv = -Δ/4.a => -49/4.1 => -49/4
Im(f(x)) = {-49/4,-4,-1/2,3}
D(f(x)) = } x ∈ R/ -4< x < 3 }
A)
4.x² + 9 = 12.x 12 +-√0 ------> x1 = 12/ 8 => 3/2
4.x² - 12.x + 9 = 0 2.4 -------> x2 = 12/8 => 3/2
Δ = (-12)² - 4.4.9 => 0
Xv = -b/2.a => 12/2.4 => 3/2
Yv = -Δ/4.a => -0/4.4 => 0
Im(f(x)) = {3/2, 0 }
D(f(x)) = {x∈R/ x = 3/2}
B) x² = x +12 1+-√49 -----> x1 = 1+7/2 => 4
x²-x-12 = 0 2.1 ---------> x2 = 1-7/2 => -3
Δ = 1² - 4.1.-12 => 49
Xv = -b/2.a => 1/2.1 => 1/2
Yv = -Δ/4.a => -49/4.1 => -49/4
Im(f(x)) = {-3,1/2,4,-49/4}
D(f(x)) = {x ∈ IR/ -3 > x < 4}
C) 2.x² = -12.x-18 -12+-0 ---------> x1 = -12/4 = -3
2.x² + 12.x + 18 = 0 2.2 -------> x2 = -12/4 = -3
Δ = 12² -4.2.18 => 0
Xv= -b/2.a = -12/2.2 => -3
Yv = -Δ/4.a = -0/4.2 => 0
Im(f(x)) = {-3,0}
D(f(x)) = { x∈ R/ x = -3 }
D) x² +9= 4.x
x² -4.x + 9 = 0
Δ = (-4)² - 4.1.9 => -20
Im(f(x))= ⊅ IR
D(f(x)) = ⊅ IR
E) 25.x² = 20.x-4 20+-0 --------------- x1 = x2 = 2/5
25.x² - 20.x + 4 = 0 2.25
Δ = (-20)² - 4.25.4 => 0
Xv = -b/2.a = 20/2.25 => 2/5
Yv = -Δ/4.a => 0
Im(f(x)) = {2/5,0}
Dm(f(x)) = {x ∈ R/ x = 2/5}
F) 2.x = 15-x² -2+-√64 ----------> x1 = -2+8/2 => 3
x²+2.x - 15 = 0 2.1 ----------> x2 = -2 - 8/2 => -5
Δ = 4-4.1-15 => 64
Xv= -b/2.a => -2/2.1 => -1
Yv = -Δ/4.a => -64/4.1 => -16
Im(f(x)) = {-16,-5,-1,3}
D(f(x)) = { x ∈ R/ -5 < x < 3}
G) x²+3.x-6 = -8 -3+-√1 ---------> x1 = -1
x² + 3.x +2 = 0 2.1 --------> x2 = -2
Δ = 3² - 4.1.2 => 1
Xv = -b/2.a => -3/2.1 => -3/2
Yv = -Δ/4.a => -1/4.1 => -1/4
H) x²+x-7 = 5 -1 +- √49 --------------> x1 = -1-7/2 => -4
x²+x-12 = 0 2.1 ------------------> x2 = -1+7/2 => 3
Δ = 1² - 4.-12 => 49
Xv = -b/2.a => -1/2.1 => -1/2
Yv = -Δ/4.a => -49/4.1 => -49/4
Im(f(x)) = {-49/4,-4,-1/2,3}
D(f(x)) = } x ∈ R/ -4< x < 3 }
Perguntas interessantes
Física,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
1 ano atrás
Química,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás