Matemática, perguntado por kunk, 1 ano atrás

quantos números inteiros, formados por algarismos distintos, maiores que 100 e menores que 1000 existem?

Soluções para a tarefa

Respondido por lamacch
58
Existem 10 algarismos entre 0 e 9. Todos os números inteiros entre 100 e 1000 têm 3 algarismos. O algarismo das centenas tem 9 algarismos possíveis, pois o zero não teria valor. Para o algarismo das dezenas, dos 10 algarismos, sobram 9, pois descartamos o algarismo usado nas centenas. Para o algarismo das unidades, sobram 8, pois descartamos os algarismos usados nas centenas e nas dezenas. Logo, pelo Princípio Fundamental da Contagem, basta multiplicar os três valores: 9x9x8=648
Respondido por reuabg
0

Podem ser formados 648 números inteiros e distintos de 3 algarismos.

O que é o princípio fundamental da contagem?

O PFC é uma teoria matemática que afirma que, se um evento é composto de duas ou mais etapas independentes e distintas, o número de combinações possíveis é determinado pela multiplicação das possibilidades de cada conjunto.

Sabendo que os números devem ser distintos, e que existem 3 posições que formam os números entre 100 e 1000, temos as seguintes possibilidades sem repetição:

  • Primeiro algarismo: 9 possibilidades (número não pode iniciar por 0);
  • Segundo algarismo: 9 possibilidades;
  • Terceiro algarismo: 8 possibilidades.

Portanto, podem ser formados 9 x 9 x 8 = 648 números inteiros e distintos de 3 algarismos.

Para aprender mais sobre o PFC, acesse:

https://brainly.com.br/tarefa/35473634

#SPJ2

Anexos:
Perguntas interessantes