Matemática, perguntado por Usuário anônimo, 1 ano atrás

Quantos grupos de 3 pessoas podem ser montados com 8 pessoas ?

Soluções para a tarefa

Respondido por melissafrs
2
Usando combinação simples: Oito tomados três a três.

8! / (3! 5!) = 40320 / (6 * 120) 

40320 / 720 = 56 

56 possibilidades.
Respondido por AlissonLaLo
0

\Large\boxed{\boxed{\boxed{{Ola\´\ }}}}}

Exercício envolvendo combinação simples.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Fórmula:

C_n_p=\dfrac{n!}{p!(n-p)!}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

C_8_,_3=\dfrac{8!}{3!(8-3)!}\\ \\ \\ \\ C_8_,_3=\dfrac{8!}{3!.5!}\\ \\ \\ \\ C_8_,_3=\dfrac{8.7.6.\diagup\!\!\!\!5!}{3!.\diagup\!\!\!\!5!}\\ \\ \\ \\ C_8_,_3=\dfrac{8.7.6}{6} \\ \\ \\ \\ C_8_,_3=\dfrac{336}{6}\\ \\ \\ \\ \Large\boxed{\boxed{\boxed{{C_8_,_3=56}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Portanto são 56 grupos que podem ser montados.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Espero ter ajudado!

Perguntas interessantes