Quanto é a soma das medidas dos angulo internos do hexagono regular?
Soluções para a tarefa
Espero ter ajudado, qualquer dúvida, só comentar! :)
Bom Dia!
________________________________________________
→ Você deve ter em mente que um polígono regular é equiângulo e equilátero, ou seja, possui todos os seus lados iguais e consequentemente seus ângulos também são congruentes.
_______________________
A formula para soma dos ângulos internos de qualquer polígono:
si=180(n-2)
_______________________
→ hexágono regular
Tem todos os lados iguais e ângulos também congruentes.
A soma dos ângulos internos da figura em questão:
si=180(n-2)
si=180(6-2)
si=180·4
si=720°
______________________________________________
- Podemos descobrir também a medida dos seus ângulos internos e externos.
→ A medida do seu ângulo externo é o suplemento do seu ângulo interno.
_______________________
Ângulo interno:
i=180(n-2)/n
i=180(6-2)/6
i=180·4/6
i=720/6
i=120° (cada ângulo interno)
_______________________
Podemos utilizar a formula do ângulo externo de um polígono regular e depois provar que ele é o suplemento do seu ângulo interno.
Ângulo externo:
e=360/n
e=360/6
e=60 (cada ângulo externo)
_______________________
Provando que o ângulo externo é o suplemento do interno:
e+i=180
e+120=180
e=180-120
e=60°
______________________________________________