Matemática, perguntado por joaovcardoso59, 11 meses atrás

Quanto e 8 sobre a raiz sexta de 2

Soluções para a tarefa

Respondido por hrickgtr
0

Resposta:

4\cdot\sqrt[6]{32}

Explicação passo-a-passo:

Boa tarde! ^^

Podemos escrever o 8 como 2^3, e podemos escrever o \sqrt[6]{2} como 2^{\frac{1}{6}}.

Assim temos

\dfrac{8}{\sqrt[6]{2}}=\dfrac{2^3}{2^{\frac{1}{6}}}

Divisão de potencias de mesma base a gente conserva a base e subtrai os expoentes. Fica assim:

\dfrac{2^3}{2^{\frac{1}{6}}}=2^{3-\frac{1}{6}}=2^{\frac{17}{6}}

Agora podemos transformar o expoente em um soma, e lembrando que quando temos uma soma no expoente podemos dividir em uma multiplicação de potencias de mesma base. Assim:

2^{\frac{17}{6}}=2^{2+\frac{5}{6}}=2^2\cdot2^{\frac{5}{6}}=4\cdot2^{\frac{5}{6}}

Agora voltamos o expoente fracionário para a forma de raiz:

4\cdot2^{\frac{5}{6}}=4\cdot\sqrt[6]{2^5} =4\cdot\sqrt[6]{32}

Bons estudos!

Perguntas interessantes