Matemática, perguntado por GabrielEngel, 4 meses atrás

qual o valor de x?
 \frac{x + 5}{x - 3}  - 3 =  \frac{x - 7}{x  + 2}

Soluções para a tarefa

Respondido por rafames1000
1

Resposta:

x'=-\frac{1 }{3}

x''=7

Explicação passo a passo:

\frac{x+5}{x-3} -3=\frac{x-7}{x+2}

\frac{x+5}{x-3} -3\frac{x-3}{x-3} =\frac{x-7}{x+2}

\frac{x+5}{x-3} -\frac{3(x-3)}{x-3} =\frac{x-7}{x+2}

\frac{x+5}{x-3} -\frac{3x-9}{x-3} =\frac{x-7}{x+2}

\frac{x+5-(3x-9)}{x-3} =\frac{x-7}{x+2}

\frac{x+5-3x+9}{x-3} =\frac{x-7}{x+2}

\frac{-2x+14}{x-3} =\frac{x-7}{x+2}

\frac{x-7}{x+2}=\frac{-2x+14}{x-3}

x-7=\frac{-2x+14}{x-3}(x+2)

x-7=\frac{(-2x+14)(x+2)}{x-3}

x-7=\frac{-2x^{2}-4x+14x+28 }{x-3}

x-7=\frac{-2x^{2}+10x+28 }{x-3}

(x-7)(x-3)=-2x^{2}+10x+28

x^{2} -3x-7x+21=-2x^{2}+10x+28

x^{2} -10x+21=-2x^{2}+10x+28

x^{2}+2x^{2}  -10x-10x+21-28=0

3x^{2}-20x-7=0

Para ax^{2} +bx+c=0:

a=3,b=-20,c=-7

x=\frac{-b\pm\sqrt{b^{2} -4ac} }{2a}

x=\frac{-(-20)\pm\sqrt{(-20)^{2} -4(3)(-7)} }{2(3)}

x=\frac{20\pm\sqrt{400 -12(-7)} }{6}

x=\frac{20\pm\sqrt{400 +84} }{6}

x=\frac{20\pm\sqrt{484} }{6}

x=\frac{20\pm\sqrt{22^{2} } }{6}

x=\frac{20\pm22 }{6}

x=\frac{10\pm11 }{3}

x'=\frac{10-11 }{3}

x'=\frac{-1 }{3}

x'=-\frac{1 }{3}

x''=\frac{10+11 }{3}

x''=\frac{21 }{3}

x''=7

....................

Prova Real:

\frac{-\frac{1}{3} +5}{-\frac{1}{3}-3} -3=\frac{-\frac{1}{3}-7}{-\frac{1}{3}+2}

\frac{-\frac{1}{3}(3) +5(3)}{-\frac{1}{3}(3)-3(3)} -3=\frac{-\frac{1}{3}(3)-7(3)}{-\frac{1}{3}(3)+2(3)}

\frac{-\frac{3}{3} +15}{-\frac{3}{3}-9} -3=\frac{-\frac{3}{3}-21}{-\frac{3}{3}+6}

\frac{-1+15}{-1-9} -3=\frac{-1-21}{-1+6}

\frac{14}{-10} -3=\frac{-22}{5}

-\frac{14}{10} -3=-\frac{22}{5}

-\frac{7}{5} -3(\frac{5}{5} )=-\frac{22}{5}

-\frac{7}{5} -\frac{15}{5}=-\frac{22}{5}

-\frac{7+15}{5} =-\frac{22}{5}

-\frac{22}{5}=-\frac{22}{5}

..........

\frac{7+5}{7-3} -3=\frac{7-7}{7+2}

\frac{12}{4} -3=\frac{0}{9}

3 -3=0

0=0

Perguntas interessantes