Matemática, perguntado por gm231754, 1 ano atrás

qual o valor de X na expressão:
 \sqrt[3]{ {x}^{x} +  {x}^{x}  }  = x

Soluções para a tarefa

Respondido por adjemir
0

Vamos lá.

Veja, Gm, que a resolução não é das mais fáceis. Vamos tentar chegar pelo menos a um valor de "x" real.

i) Pede-se o valor de "x" na seguinte expressão:


∛(xˣ + xˣ) = x ----- note que "xˣ+xˣ = 2xˣ". Assim, ficaremos com:

∛(2xˣ) = x ------ para eliminar o radical do 1º membro, vamos elevar ambos os membros ao cubo, ficando:

[∛(2xˣ)]³ = x³ ------ desenvolvendo, ficaremos assim:

2xˣ = x³ ----- isolando o "2", ficaremos com:

2 = x³ / xˣ ---- note que no 2º membro temos uma divisão de potências da mesma base. Regra: conserva-se a base comum e subtraem-se os expoentes. Então ficaremos assim:

2 = x³⁻ˣ ----- ou invertendo-se, o que dá no mesmo:

x³⁻ˣ = 2¹ ----- admitindo que a base "x" seja igual "2", então, no cálculo de "x" do expoente também deveremos encontrar x = 2. Então se as bases são iguais, poderemos igualar os expoentes. Logo:

3 - x = 1 ----- passando "3" para o 2º membro, teremos:

- x = 1 - 3 ----- como "1-3 = -2", teremos:

- x = - 2 ---- multiplicando-se ambos os membros por "-1", ficamos com:

x = 2 <--- Esta deverá ser a resposta. Note que quando admitimos a base "x" igual a "2", também encontramos a incógnita "x" do expoente igual a "2", o que comprova que "2" é um valor válido para "x".


É isso aí.

Deu pra entender bem?


OK?

Adjemir.


gm231754: é isso aí
gm231754: você acertou
gm231754: eu sempre soube a resposta
Perguntas interessantes