Matemática, perguntado por lemesluiz16, 4 meses atrás

qual o limite da funcão f(x) =
 \frac{(3x + 2)(x - 1)}{(x - 1)}
com x tendendo a 1 ?​

Soluções para a tarefa

Respondido por silvapgs50
4

Resposta:

Utilizando a regra de L'Hôpital, podemos calcular que, quando x tende a 1 o limite da função f é igual a 6.

Explicação passo a passo:

Apesar da função ser o quociente de dois polinômios, o limite da função f(x) não pode ser calculado substituindo o valor 1 na variável x, pois obteríamos a indeterminação 0/0, de fato:

\dfrac{(3 \cdot 0 + 2) \cdot (1 - 1)}{(1-1)}=\dfrac{2 \cdot 0}{0}=\dfrac{0}{0}

Nesses podemos utilizar a regra de L'Hôpital, a qual afirma que, se g e h são duas funções deriváveis num intervalo I, com a derivada de h diferente de zero nos pontos do intervalo I e se:

\lim_{x \rightarrow a} g(x) = \lim_{x \rightarrow a} h(x) =0

Ou:

\lim_{x \rightarrow a} g(x) = \lim_{x \rightarrow a} h(x) =\infty

Então:

\lim_{x \rightarrow a} \dfrac{g(x)}{h(x)} = \lim_{x \rightarrow a} \dfrac{g'(x)}{h'(x)}

Utilizando:

  • A regra de L'Hôpital para calcular o limite da função f.
  • A regra da derivação de polinômios, a qual afirma que:

\dfrac{d}{dx}(a_n x^n + a_{n-1}x^{n-1} + \cdots a_1x+a_0)=na_n x^{n-1} + (n-1)a_{n-2}x^{n-1} + \cdots a_1

Podemos escrever:

\lim_{x \rightarrow 1} f(x)= \lim_{x \rightarrow 1} \dfrac{(3x+2) \cdot (x-1)}{(x-1)}=\lim_{x \rightarrow 1} \dfrac{(3x^2 -x -2)}{(x-1)}=\lim_{x \rightarrow 1} \dfrac{\dfrac{d}{dx}(3x^2 -x -2)}{\dfrac{d}{dx}(x-1)}=\lim_{x \rightarrow 1} \dfrac{6x}{1}=\dfrac{6 \cdot 1}{1}=6

O limite da função f quando x tende a 1 é igual a 6.

Para mais informações sobre a regra de L'Hôpital, acesse:

https://brainly.com.br/tarefa/4196478

Perguntas interessantes