Qual eo decimo termo da PA (4,10....)
Soluções para a tarefa
an = a1 + (n -1) r
an - Ultimo termo da P.A
a1 - Primeiro termo da P.A
n - Números de termos da P.A
r - Razão da P.A
Resolução:
an = 4 + ( 10 -1 ) 6
an = 4 + ( 9 )6
an = 4 + 54
an = 58
Espero ter lhe ajudado!
Olá! Segue a resposta com algumas explicações.
(I)Interpretação do problema:
Da sequência (4, 10,...), tem-se que:
a)cada elemento nela presente será o resultado do imediatamente anterior adicionado a um mesmo valor, a saber, 6 unidades. Se um comportamento deste tipo acontece, tem-se uma sequência numérica especial, denominada progressão aritmética (P.A.).
b)progressão aritmética é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão.
c)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição: 4 (é o primeiro elemento da sequência e consiste no único número não formado pela soma de um anterior com a razão);
d)décimo termo (a₁₀): ?
e)número de termos (n): 10
- Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 10ª), equivalente ao número de termos.
f)Embora não se saiba o valor do décimo termo, apenas pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos crescem, afastam-se do zero, para a direita dele, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 10 - 4 ⇒
r = 6 (Razão positiva, conforme prenunciado no item f acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o décimo termo:
an = a₁ + (n - 1) . r ⇒
a₁₀ = a₁ + (n - 1) . (r) ⇒
a₁₀ = 4 + (10 - 1) . (6) ⇒
a₁₀ = 4 + (9) . (6) ⇒ (Veja a Observação 2.)
a₁₀ = 4 + 54 ⇒
a₁₀ = 58
Observação 2: Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).
Resposta: O décimo termo da P.A. (4, 10, ...) é 58.
====================================================
DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo a₁₀ = 58 fórmula do termo geral da P.A. e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o décimo termo realmente corresponde ao afirmado:
an = a₁ + (n - 1) . r ⇒
a₁₀ = a₁ + (n - 1) . (r) ⇒
58 = a₁ + (10 - 1) . (6) ⇒
58 = a₁ + (9) . (6) ⇒
58 = a₁ + 54 ⇒
58 - 54 = a₁ ⇒
4 = a₁ ⇔ (O símbolo ⇔ significa "equivale a".)
a₁ = 4 (Provado que a₁₀ = 58.)
→Veja outras tarefas relacionadas à determinação de termos em progressão aritmética e resolvidas por mim:
https://brainly.com.br/tarefa/5732636
brainly.com.br/tarefa/15831345
brainly.com.br/tarefa/676056
brainly.com.br/tarefa/21508074
brainly.com.br/tarefa/28286261
brainly.com.br/tarefa/11815187
brainly.com.br/tarefa/2654787
brainly.com.br/tarefa/4051851
brainly.com.br/tarefa/28264159