Matemática, perguntado por Usuário anônimo, 8 meses atrás

Qual é o valor de x, no conjunto R,na expressão (3+x)-1=(17-4x)-(3+x)?​

Soluções para a tarefa

Respondido por mayonese107
8

resposta:

x = 2

(3+)−1=(17−4)−1(3+)

(3+x)−1=(17−4x)−1(3+x)(3+x)-1=(17-4x)-1(3+x)(3+x)−1=(17−4x)−1(3+x)

Resolução

1)

Reordenar os termos

(3+)−1=(17−4)−1(3+)

(3+x)−1=(17−4x)−1(3+x)({\color{#c92786}{3+x}})-1=(17-4x)-1(3+x)(3+x)−1=(17−4x)−1(3+x)

(+3)−1=(17−4)−1(3+)

(x+3)−1=(17−4x)−1(3+x)({\color{#c92786}{x+3}})-1=(17-4x)-1(3+x)(x+3)−1=(17−4x)−1(3+x)

2)

Elimine os parênteses

(+3)−1=(17−4)−1(3+)

(x+3)−1=(17−4x)−1(3+x)(x+3)-1=(17-4x)-1(3+x)(x+3)−1=(17−4x)−1(3+x)

+3−1=(17−4)−1(3+)

x+3−1=(17−4x)−1(3+x)x+3-1=(17-4x)-1(3+x)x+3−1=(17−4x)−1(3+x)

3

Resolva a subtração

+3−1=(17−4)−1(3+)

x+3−1=(17−4x)−1(3+x)x+{\color{#c92786}{3}}{\color{#c92786}{-1}}=(17-4x)-1(3+x)x+3−1=(17−4x)−1(3+x)

+2=(17−4)−1(3+)

x+2=(17−4x)−1(3+x)x+{\color{#c92786}{2}}=(17-4x)-1(3+x)x+2=(17−4x)−1(3+x)

4)

Reordenar os termos

+2=(17−4)−1(3+)

x+2=(17−4x)−1(3+x)x+2=({\color{#c92786}{17-4x}})-1(3+x)x+2=(17−4x)−1(3+x)

+2=(−4+17)−1(3+)

x+2=(−4x+17)−1(3+x)x+2=({\color{#c92786}{-4x+17}})-1(3+x)x+2=(−4x+17)−1(3+x)

5)

Reordenar os termos

+2=(−4+17)−1(3+)

x+2=(−4x+17)−1(3+x)x+2=(-4x+17)-1({\color{#c92786}{3+x}})x+2=(−4x+17)−1(3+x)

+2=(−4+17)−1(+3)

x+2=(−4x+17)−1(x+3)x+2=(-4x+17)-1({\color{#c92786}{x+3}})x+2=(−4x+17)−1(x+3)

6)

Aplique a propriedade distributiva

+2=(−4+17)−1(+3)

x+2=(−4x+17)−1(x+3)x+2=(-4x+17){\color{#c92786}{-1(x+3)}}x+2=(−4x+17)−1(x+3)

+2=(−4+17)−−3

x+2=(−4x+17)−x−3x+2=(-4x+17){\color{#c92786}{-x-3}}x+2=(−4x+17)−x−3

7)

Elimine os parênteses

+2=(−4+17)−−3

x+2=(−4x+17)−x−3x+2=(-4x+17)-x-3x+2=(−4x+17)−x−3

+2=−4+17−−3

x+2=−4x+17−x−3x+2=-4x+17-x-3x+2=−4x+17−x−3

8)

Resolva a subtração

+2=−4+17−−3

x+2=−4x+17−x−3x+2=-4x+{\color{#c92786}{17}}-x{\color{#c92786}{-3}}x+2=−4x+17−x−3

+2=−4+14−

x+2=−4x+14−xx+2=-4x+{\color{#c92786}{14}}-xx+2=−4x+14−x

9)

Combine os termos semelhantes

+2=−4+14−

x+2=−4x+14−xx+2={\color{#c92786}{-4x}}+14{\color{#c92786}{-x}}x+2=−4x+14−x

+2=−5+14

x+2=−5x+14x+2={\color{#c92786}{-5x}}+14x+2=−5x+14

10)

Subtraia

2

222

dos dois lados da equação

+2=−5+14

x+2=−5x+14x+2=-5x+14x+2=−5x+14

+2−2=−5+14−2

x+2−2=−5x+14−2x+2{\color{#c92786}{-2}}=-5x+14{\color{#c92786}{-2}}x+2−2=−5x+14−2

11)

Simplifique

Resolva a subtração

Resolva a subtração

=−5+12

x=−5x+12x=-5x+12x=−5x+12

12)

Some

5

5x5x5x

aos dois lados da equação

=−5+12

x=−5x+12x=-5x+12x=−5x+12

+5=−5+12+5

x+5x=−5x+12+5xx+{\color{#c92786}{5x}}=-5x+12+{\color{#c92786}{5x}}x+5x=−5x+12+5x

13)

Simplifique

Combine os termos semelhantes

Combine os termos semelhantes

6=12

6x=126x=126x=12

14)

Divida os dois lados da equação pelo mesmo termo

6=12

6x=126x=126x=12

66=126

6x6=126\frac{6x}{{\color{#c92786}{6}}}=\frac{12}{{\color{#c92786}{6}}}66x​=612​

15)

Simplifique

Cancele os termos que estão tanto no numerador quanto no denominador

Calcule a divisão

=2

x=2x=2x=2


mayonese107: feliz em ter ajudado de nada
Perguntas interessantes