Qual é o valor de x, no conjunto R,na expressão (3+x)-1=(17-4x)-(3+x)?
Soluções para a tarefa
resposta:
x = 2
(3+)−1=(17−4)−1(3+)
(3+x)−1=(17−4x)−1(3+x)(3+x)-1=(17-4x)-1(3+x)(3+x)−1=(17−4x)−1(3+x)
Resolução
1)
Reordenar os termos
(3+)−1=(17−4)−1(3+)
(3+x)−1=(17−4x)−1(3+x)({\color{#c92786}{3+x}})-1=(17-4x)-1(3+x)(3+x)−1=(17−4x)−1(3+x)
(+3)−1=(17−4)−1(3+)
(x+3)−1=(17−4x)−1(3+x)({\color{#c92786}{x+3}})-1=(17-4x)-1(3+x)(x+3)−1=(17−4x)−1(3+x)
2)
Elimine os parênteses
(+3)−1=(17−4)−1(3+)
(x+3)−1=(17−4x)−1(3+x)(x+3)-1=(17-4x)-1(3+x)(x+3)−1=(17−4x)−1(3+x)
+3−1=(17−4)−1(3+)
x+3−1=(17−4x)−1(3+x)x+3-1=(17-4x)-1(3+x)x+3−1=(17−4x)−1(3+x)
3
Resolva a subtração
+3−1=(17−4)−1(3+)
x+3−1=(17−4x)−1(3+x)x+{\color{#c92786}{3}}{\color{#c92786}{-1}}=(17-4x)-1(3+x)x+3−1=(17−4x)−1(3+x)
+2=(17−4)−1(3+)
x+2=(17−4x)−1(3+x)x+{\color{#c92786}{2}}=(17-4x)-1(3+x)x+2=(17−4x)−1(3+x)
4)
Reordenar os termos
+2=(17−4)−1(3+)
x+2=(17−4x)−1(3+x)x+2=({\color{#c92786}{17-4x}})-1(3+x)x+2=(17−4x)−1(3+x)
+2=(−4+17)−1(3+)
x+2=(−4x+17)−1(3+x)x+2=({\color{#c92786}{-4x+17}})-1(3+x)x+2=(−4x+17)−1(3+x)
5)
Reordenar os termos
+2=(−4+17)−1(3+)
x+2=(−4x+17)−1(3+x)x+2=(-4x+17)-1({\color{#c92786}{3+x}})x+2=(−4x+17)−1(3+x)
+2=(−4+17)−1(+3)
x+2=(−4x+17)−1(x+3)x+2=(-4x+17)-1({\color{#c92786}{x+3}})x+2=(−4x+17)−1(x+3)
6)
Aplique a propriedade distributiva
+2=(−4+17)−1(+3)
x+2=(−4x+17)−1(x+3)x+2=(-4x+17){\color{#c92786}{-1(x+3)}}x+2=(−4x+17)−1(x+3)
+2=(−4+17)−−3
x+2=(−4x+17)−x−3x+2=(-4x+17){\color{#c92786}{-x-3}}x+2=(−4x+17)−x−3
7)
Elimine os parênteses
+2=(−4+17)−−3
x+2=(−4x+17)−x−3x+2=(-4x+17)-x-3x+2=(−4x+17)−x−3
+2=−4+17−−3
x+2=−4x+17−x−3x+2=-4x+17-x-3x+2=−4x+17−x−3
8)
Resolva a subtração
+2=−4+17−−3
x+2=−4x+17−x−3x+2=-4x+{\color{#c92786}{17}}-x{\color{#c92786}{-3}}x+2=−4x+17−x−3
+2=−4+14−
x+2=−4x+14−xx+2=-4x+{\color{#c92786}{14}}-xx+2=−4x+14−x
9)
Combine os termos semelhantes
+2=−4+14−
x+2=−4x+14−xx+2={\color{#c92786}{-4x}}+14{\color{#c92786}{-x}}x+2=−4x+14−x
+2=−5+14
x+2=−5x+14x+2={\color{#c92786}{-5x}}+14x+2=−5x+14
10)
Subtraia
2
222
dos dois lados da equação
+2=−5+14
x+2=−5x+14x+2=-5x+14x+2=−5x+14
+2−2=−5+14−2
x+2−2=−5x+14−2x+2{\color{#c92786}{-2}}=-5x+14{\color{#c92786}{-2}}x+2−2=−5x+14−2
11)
Simplifique
Resolva a subtração
Resolva a subtração
=−5+12
x=−5x+12x=-5x+12x=−5x+12
12)
Some
5
5x5x5x
aos dois lados da equação
=−5+12
x=−5x+12x=-5x+12x=−5x+12
+5=−5+12+5
x+5x=−5x+12+5xx+{\color{#c92786}{5x}}=-5x+12+{\color{#c92786}{5x}}x+5x=−5x+12+5x
13)
Simplifique
Combine os termos semelhantes
Combine os termos semelhantes
6=12
6x=126x=126x=12
14)
Divida os dois lados da equação pelo mesmo termo
6=12
6x=126x=126x=12
66=126
6x6=126\frac{6x}{{\color{#c92786}{6}}}=\frac{12}{{\color{#c92786}{6}}}66x=612
15)
Simplifique
Cancele os termos que estão tanto no numerador quanto no denominador
Calcule a divisão
=2
x=2x=2x=2