Matemática, perguntado por IsabelaPortella10, 1 ano atrás

Qual é o limite quando x->3 de [(x+6)^1/2 -3]/[x-3]?

Soluções para a tarefa

Respondido por Lukyo
1
Caso tenha problemas para visualizar a resposta pelo aplicativo, experimente abrir pelo navegador: https://brainly.com.br/tarefa/8090977

__________


Calcular o limite:

\mathsf{\underset{x\to 3}{\ell im}~\dfrac{\sqrt{x+6}-3}{x-3}}\\\\\\ =\mathsf{\underset{x\to 3}{\ell im}~\dfrac{\sqrt{x+6}-3}{x-3}\cdot \dfrac{\sqrt{x+6}+3}{\sqrt{x+6}+3}}\\\\\\ =\mathsf{\underset{x\to 3}{\ell im}~\dfrac{\big(\sqrt{x+6}-3\big)\cdot \big(\sqrt{x+6}+3\big)}{(x-3)\cdot \big(\sqrt{x+6}+3\big)}}

=\mathsf{\underset{x\to 3}{\ell im}~\dfrac{\big(\sqrt{x+6}\big)^2-3^2}{(x-3)\cdot \big(\sqrt{x+6}+3\big)}}\\\\\\ =\mathsf{\underset{x\to 3}{\ell im}~\dfrac{x+6-9}{(x-3)\cdot \big(\sqrt{x+6}+3\big)}}\\\\\\ =\mathsf{\underset{x\to 3}{\ell im}~\dfrac{x-3}{(x-3)\cdot \big(\sqrt{x+6}+3\big)}}\\\\\\ =\mathsf{\underset{x\to 3}{\ell im}~\dfrac{1}{\sqrt{x+6}+3}}

=\mathsf{\dfrac{1}{\sqrt{3+6}+3}}\\\\\\ =\mathsf{\dfrac{1}{\sqrt{9}+3}}\\\\\\ =\mathsf{\dfrac{1}{3+3}}\\\\\\ =\mathsf{\dfrac{1}{6}}


\therefore~~\boxed{\begin{array}{c} \mathsf{\underset{x\to 3}{\ell im}~\dfrac{\sqrt{x+6}-3}{x-3}=\dfrac{1}{6}} \end{array}}\qquad\quad\checkmark


Bons estudos! :-)


Tags:   limite função irracional raiz multiplicação pelo conjugado cálculo diferencial

Perguntas interessantes