Matemática, perguntado por marcelo7197, 10 meses atrás

qual é o conjunto solução da equação :
\mathtt{ \cos^2( \dfrac{3\pi}{2} - x )~=~\cos^2( \pi + x ) }\\ que satisfazem a condição \mathtt{ 0 \leq x \leq \pi } \\ ??

A)  \huge{ \{ \dfrac{\pi}{6} ; \dfrac{5\pi}{6} \} } \\

B)  \huge{ \{ \dfrac{\pi}{6} ; \dfrac{\pi}{3} \} } \\

C)  \huge{ \{ \dfrac{\pi}{3} ; \dfrac{2\pi}{3} \} } \\

Soluções para a tarefa

Respondido por CyberKirito
3

\mathsf{cos^2(\dfrac{3\pi}{2}-x)=cos^2(\pi+x)}\\\mathsf{|cos(\dfrac{3\pi}{2}-x)|=|cos(\pi+x)|}\\\mathsf{cos(\dfrac{3\pi}{2}-x)=cos(\pi+x)}\\\mathsf{-sen(x)=-cos(x)}\\\mathsf{sen(x)-cos(x)=0}\\\mathsf{(sen(x)-cos(x))^2=0^2}\\\mathsf{sen^2(x)-sen(2x)+cos^2(x)=0}\\\mathsf{1-sen(2x)=0\implies~sen(2x)=1}\\\mathsf{2x=\dfrac{\pi}{2}}\\\mathsf{4x=\pi}\\\mathsf{x=\dfrac{\pi}{4}}

\mathsf{cos(\dfrac{3\pi}{2}-x)=-cos(\pi+x)}\\\mathsf{-sen(x)=-1\cdot -cos(x)}\\\mathsf{-sen(x)=cos(x)}\\\mathsf{sen(x)+cos(x)=0}\\\mathsf{(sen(x)+cos(x))^2=0^2}\\\mathsf{sen(2x)+1=0}\\\mathsf{sen(2x)=-1}\\\mathsf{2x=\dfrac{3\pi}{2}}\\\mathsf{4x=3\pi}\\\mathsf{x=\dfrac{3\pi}{4}}

Verificação:

Para \mathsf{x=\dfrac{\pi}{4}:}

\mathsf{cos^2(\dfrac{3\pi}{2}-x)=cos^2(\dfrac{3\pi}{2}-\dfrac{\pi}{4})}\\\mathsf{cos^2(\dfrac{5\pi}{4})=\left(-\dfrac{\sqrt{2}}{2}\right)^2=\dfrac{1}{2}}

\mathsf{cos^2(\pi+\dfrac{\pi}{4})=cos^2(\dfrac{5\pi}{4})=\left(-\dfrac{\sqrt{2}}{2}\right)^2=\dfrac{1}{2}}

Portanto

\mathsf{\dfrac{\pi}{4}} é solução ✅

Para \mathsf{x=\dfrac{3\pi}{4}:}

\mathsf{cos^2(\dfrac{3\pi}{2}-\dfrac{3\pi}{4})}\\\mathsf{cos^2(\dfrac{3\pi}{4})=\left(\dfrac{-\sqrt{2}}{2}\right)^2=\dfrac{1}{2}}

\mathsf{cos^2(\pi+\dfrac{3\pi}{4})=cos^2(\dfrac{7\pi}{4})=\left(\dfrac{\sqrt{2}}{2}\right)^2=\dfrac{1}{2}}

Portanto

\mathsf{\dfrac{3\pi}{4}} é solução ✅

\huge\boxed{\boxed{\boxed{\boxed{\mathsf{S=\{\dfrac{\pi}{4},\dfrac{3\pi}{4}\}}}}}}

\dotfill

Saiba mais em:

https://brainly.com.br/tarefa/17779653

Perguntas interessantes