qual é a solução de x2+4x-5=0
Soluções para a tarefa
Respondido por
0
Oi,
![x^{2} +4x-5=0 x^{2} +4x-5=0](https://tex.z-dn.net/?f=+x%5E%7B2%7D+%2B4x-5%3D0)
podemos identificar os termos da equação:
![\begin{cases}a=1\\
b=4\\
c=-5\end{cases} \begin{cases}a=1\\
b=4\\
c=-5\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Da%3D1%5C%5C%0Ab%3D4%5C%5C%0Ac%3D-5%5Cend%7Bcases%7D)
Aplicando delta:
![\Delta=b^2-4ac\\
\Delta=4^2-4*1*(-5)\\
\Delta=16+20\\
\Delta=36 \Delta=b^2-4ac\\
\Delta=4^2-4*1*(-5)\\
\Delta=16+20\\
\Delta=36](https://tex.z-dn.net/?f=%5CDelta%3Db%5E2-4ac%5C%5C%0A%5CDelta%3D4%5E2-4%2A1%2A%28-5%29%5C%5C%0A%5CDelta%3D16%2B20%5C%5C%0A%5CDelta%3D36)
![x= \dfrac{-b\pm \sqrt{\Delta} }{2a}\\\\\\
x= \dfrac{-4\pm \sqrt{36} }{2*1}=\dfrac{-4\pm6}{2}\begin{cases}x'=\dfrac{-4+6}{2}\to~x'= \dfrac{2}{2}~\to~x'=1\\\\
x''= \dfrac{-4-6}{2}\to~x''= \dfrac{-10}{2}\to~x''=-5 \end{cases} x= \dfrac{-b\pm \sqrt{\Delta} }{2a}\\\\\\
x= \dfrac{-4\pm \sqrt{36} }{2*1}=\dfrac{-4\pm6}{2}\begin{cases}x'=\dfrac{-4+6}{2}\to~x'= \dfrac{2}{2}~\to~x'=1\\\\
x''= \dfrac{-4-6}{2}\to~x''= \dfrac{-10}{2}\to~x''=-5 \end{cases}](https://tex.z-dn.net/?f=x%3D+%5Cdfrac%7B-b%5Cpm+%5Csqrt%7B%5CDelta%7D+%7D%7B2a%7D%5C%5C%5C%5C%5C%5C%0Ax%3D+%5Cdfrac%7B-4%5Cpm+%5Csqrt%7B36%7D+%7D%7B2%2A1%7D%3D%5Cdfrac%7B-4%5Cpm6%7D%7B2%7D%5Cbegin%7Bcases%7Dx%27%3D%5Cdfrac%7B-4%2B6%7D%7B2%7D%5Cto%7Ex%27%3D+%5Cdfrac%7B2%7D%7B2%7D%7E%5Cto%7Ex%27%3D1%5C%5C%5C%5C%0Ax%27%27%3D+%5Cdfrac%7B-4-6%7D%7B2%7D%5Cto%7Ex%27%27%3D+%5Cdfrac%7B-10%7D%7B2%7D%5Cto%7Ex%27%27%3D-5+%5Cend%7Bcases%7D)
Portanto, a solução da equação acima é:
![\boxed{S=\{1,-5\}} \boxed{S=\{1,-5\}}](https://tex.z-dn.net/?f=%5Cboxed%7BS%3D%5C%7B1%2C-5%5C%7D%7D)
Espero ter ajudado e tenha ótimos estudos =))
podemos identificar os termos da equação:
Aplicando delta:
Portanto, a solução da equação acima é:
Espero ter ajudado e tenha ótimos estudos =))
Perguntas interessantes