Qual é a resolução de:
A) ㏒₈ (4√2)
B) ㏒₂₇ (9√3)
Soluções para a tarefa
Respondido por
1
Olá Amanda
A) log8(4√2) =
log8(4) + log8(√2) =
log(4)/log(8) + log(√2)/log(8) =
log(2^2)/log(2^3) + log(2)/2log(2^3)
(2/3)*log(2)/log(2) = log(2)/6log(2) =
2/3 + 1/6 = 4/6 + 1/6 = 5/6
B) log27(9√3) =
log(9)/log(27) + log(√3)/log(27) =
log(3^2)/log(3^3) + log(3)/2log(3^3) =
2/3 + 1/6 = 4/6 + 1/6 = 5/6
.
A) log8(4√2) =
log8(4) + log8(√2) =
log(4)/log(8) + log(√2)/log(8) =
log(2^2)/log(2^3) + log(2)/2log(2^3)
(2/3)*log(2)/log(2) = log(2)/6log(2) =
2/3 + 1/6 = 4/6 + 1/6 = 5/6
B) log27(9√3) =
log(9)/log(27) + log(√3)/log(27) =
log(3^2)/log(3^3) + log(3)/2log(3^3) =
2/3 + 1/6 = 4/6 + 1/6 = 5/6
.
Perguntas interessantes