Qual é a definição de Grandezas direta e inversa ? Poderiam me dar exemplos ?
Soluções para a tarefa
Respondido por
1
As grandezas diretamente proporcionais estão ligadas de modo que à medida que uma grandeza aumenta ou diminui, a outra altera
de forma proporcional.
Para o melhor entendimento vamos citar alguns exemplos básicos.
Exemplo 1
Uma costureira gasta 1,40 metros de tecido na confecção de uma bermuda. Caso ela queira confeccionar cinco bermudas, quantos metros de tecido serão gastos?
Resolução:
A situação é um típico problema envolvendo grandezas diretamente proporcionais. A costureira irá gastar 7 metros de tecido, pois 1,40 x 5 = 7. À medida que o número de bermudas
exemplos da inversa
Dada uma sentença de uma função y = f(x), para encontrar a sua inversa é preciso seguir alguns passos. Observe:
Exemplo 1
Dada a função f(x) = 3x -5, para determinarmos a sua inversa f –1(x) precisamos fazer uma troca x e y na expressão y = 3x – 5. Assim teremos x = 3y – 5, logo:
x = 3y – 5
–3y = –x –5 (multiplicar por –1)
3y = x + 5
y = (x + 5)/3
Portanto, a função f(x) = 3x -5 terá inversa igual a f –1(x) = (x + 5)/3.
Exemplo 2
Dada a função f(x) = x² a sua inversa será:
Realizando a troca entre x e y na expressão y = x² → x = y², logo:
x = y²
√x = √y²
√x = y
y = √x
A função f(x) = x² terá inversa f –1(x) = √x
de forma proporcional.
Para o melhor entendimento vamos citar alguns exemplos básicos.
Exemplo 1
Uma costureira gasta 1,40 metros de tecido na confecção de uma bermuda. Caso ela queira confeccionar cinco bermudas, quantos metros de tecido serão gastos?
Resolução:
A situação é um típico problema envolvendo grandezas diretamente proporcionais. A costureira irá gastar 7 metros de tecido, pois 1,40 x 5 = 7. À medida que o número de bermudas
exemplos da inversa
Dada uma sentença de uma função y = f(x), para encontrar a sua inversa é preciso seguir alguns passos. Observe:
Exemplo 1
Dada a função f(x) = 3x -5, para determinarmos a sua inversa f –1(x) precisamos fazer uma troca x e y na expressão y = 3x – 5. Assim teremos x = 3y – 5, logo:
x = 3y – 5
–3y = –x –5 (multiplicar por –1)
3y = x + 5
y = (x + 5)/3
Portanto, a função f(x) = 3x -5 terá inversa igual a f –1(x) = (x + 5)/3.
Exemplo 2
Dada a função f(x) = x² a sua inversa será:
Realizando a troca entre x e y na expressão y = x² → x = y², logo:
x = y²
√x = √y²
√x = y
y = √x
A função f(x) = x² terá inversa f –1(x) = √x
IcaroDsouza:
Mas e a inversa ?
Perguntas interessantes