Matemática, perguntado por valeskw, 11 meses atrás

Qual a soma de todos os inteiros entre 50 e 350 que que possuemo algarismo das unidades igual a 5?

Soluções para a tarefa

Respondido por Usuário anônimo
1
Olá,tudo bem com você??


Qual a soma de todos os inteiros entre 50 e 350 que que possuemo algarismo das unidades igual a 5?

N={55,65,75,...........,345}

r=a2-a1

r=65-55=10

a1=55

an=345

an=a1+(n-1).r

345=55+(n-1).10

345=55+10n-10

345=45+10n

10n=345-45

10n=300

n=300/10

n=30 termos


sn=n.(a1+an)/2

s30=30.(55+345)/2

s30=15.(400)

s30=200.(30)

s30=6.000

espero ter ajudado!

boa tarde!

qualquer dúvida,pode chamar!!

grande abraço!
Respondido por igorvdm
0

Resposta:

6000

Explicação passo-a-passo:

A sequência dos números a serem somados é (55, 65, 75, 85, ... , 335, 345).

Percebemos que esta sequência é uma PA (progressão aritmética) de razão 10.

Para encontrarmos a quantidades de termos dessa sequência utilizamos a fórmula do termo geral: An = A1 + (n-1).r

An -> último termo da sequência

A1 -> primeiro termo da sequência

n -> número de termos da sequência

r -> razão da PA


Dessa forma,

345 = 55 + (n-1).10

n = 30


Para a soma da sequência podemos utilizar a fórmula S = [(A1 + An).n]/2

Então, S = [(345 + 55).30]/2

S= [400.30]/2

S = 6000


Resposta: 6000


Espero ter ajudado :)


Perguntas interessantes