Matemática, perguntado por atelievintage, 5 meses atrás

qual a soma de 1\4 + 1\3


atelievintage: fraçoes com denominadores diferentes precisam de ajustes que tornem os denominadores iguais antes de serem somadas. considsrando a afirmação acima 3\4 + 1\3

Soluções para a tarefa

Respondido por Netterr
2

R  =  A soma das frações é igual a 7/12

\large\text{$\dfrac{1}{4}~+~\dfrac{1}{3}$}\\\\\\\text{$Calculando~o~MMC~entre~4~e~3:$}\\\\\\\begin{array}{r|l} 4, 3& 2\\ 2, 3& 2\\ 1, 3& 3\\ 1, 1&2~.~2~.~3~=~\bf{12}\end{array}\\\\\\\\\text{$\dfrac{(12\div4\times1)~+~(12\div3\times1)}{12}$}\\\\\\\text{$\dfrac{3~+~4}{12}~=~\boxed{\bf{\dfrac{7}{12}}}~\star$}

Resolvendo de outra forma:

\large\text{$\dfrac{1}{4}~+~\dfrac{1}{3}$}\\\\\\\large\text{$\dfrac{1~\times~3}{4~\times~3}~+~\dfrac{1~\times~4}{3~\times~4}$}\\\\\\\large\text{$\dfrac{3}{12}~+~\dfrac{4}{12}$}\\\\\\\large\text{$Repete~os~denominadores~e~soma~os~numeradores:$}\\\\\\\large\text{$\dfrac{3~+~4}{12}~=~\boxed{\bf{\dfrac{7}{12}}}~\star$}

Respondido por Math739
2

Resposta:

\textsf{Segue a resposta abaixo}

Explicação passo-a-passo:

\begin{array}{l}\begin{array}{rr|l}\sf4&\sf3&\sf2\\\sf2&\sf3&\sf2\\\sf1&\sf3&\sf3\\\sf1&\sf1&\!\!\!\overline{~\:\sf2\cdot2\cdot3=12~}\end{array}\\\\\sf MMC(4,3)=12\\\\\sf\dfrac{1}{4}+\dfrac{1}{3}=\dfrac{3}{12}+\dfrac{4}{12}\\\\\sf\dfrac{1}{4}+\dfrac{1}{3}=\dfrac{3+4}{12}\\\\\boxed{\boxed{\sf \dfrac{1}{4}+\dfrac{1}{3}=\dfrac{7}{12}}}\end{array}

Perguntas interessantes
Matemática, 11 meses atrás