qual a secante de 195° ? com desenvolvimento por favor
Soluções para a tarefa
Sem poder utilizar a calculadora precisaremos particionar o 195° e utilizar as propriedades de sen(a+b) e cos(a+b).
No link tem as propriedades
https://brasilescola.uol.com.br/matematica/formulas-adicao-arcos.htm
Como dito precisamos particionar este 195° em arcos conhecidos como 30°, 45°, 60° e seus correspondentes nos outros quadrantes (120, 150 ...)
Atenção: Acompanhe reescrevendo no papel para não se perder!
Dito isso, uma das possibilidades é particionar 195 = 150 + 45
Secante, vale lembrar, é 1/cos ,ou seja, precisamos descobrir cos(150+45)
cos(150+45) = cos(150)cos(45) - sen(150)sen(45)
cos(150) = -cos(30) = -Raiz(3) / 2
cos(45) = sen(45) = Raiz(2) / 2
sen(150) = sen(30) = 1/2
Substituindo os valores:
cos(195) = (-Raiz(3) / 2)*(Raiz(2) / 2) - (1/2)*(Raiz(2) / 2)
cos(195) = -Raiz(6) / 4 - Raiz(2) / 4
cos(195) = - ( Raiz(6) + Raiz(2) ) / 4
Por fim como queremos a secante:
Sec(195) = 1 / [ - ( Raiz(6) + Raiz(2) ) / 4 ]
Sec(195) = -4 / ( Raiz(6) + Raiz(2) )
Se quiser deixar mais simplificado, podemos multiplicar e dividir por ( Raiz(6) - Raiz(2) ):
-4 / ( Raiz(6) + Raiz(2) ) * ( ( Raiz(6) - Raiz(2) ) / ( Raiz(6) - Raiz(2) ) )
-4*( ( Raiz(6) - Raiz(2) ) / ( (Raiz(6) + Raiz(2)) * ( Raiz(6) - Raiz(2) )
-4*( ( Raiz(6) - Raiz(2) ) / (6 - 2)
-Raiz(6) + Raiz(2)