Quais são os possíveis algarismos que M pode assumir para que o número 12m seja divisível por 3
Soluções para a tarefa
Respondido por
174
Um número é divisível por 3 quando a soma de seus algarismos der um número divisível por 3
logo
12m
M pode ser 0 , 3 , 6 ,9
M=0 ⇒ 120÷3=40
M=3 ⇒123 ÷3=41
M=6 ⇒ 126÷3=42
M=9 ⇒129÷3=43
Respondido por
58
Esses números são: 0, 3, 6 e 9.
É uma característica necessária aos números divisíveis por 3 que a soma de seus algarismos seja também divisível por 3:
m = 0 -> 120
1 + 2 + 0 = 3 (divisível por 3)
m = 1 -> 121
1 + 2 + 1 = 4 (não divisível por 3)
m = 2 -> 122
1 + 2 + 2 = 5 (não divisível por 3)
m = 3 -> 123
1 + 2 + 3 = 6 (divisível por 3)
m = 4 -> 124
1 + 2 + 4 = 7 (não divisível por 3)
m = 5 -> 125
1 + 2 + 5 = 8 (não divisível por 3)
m = 6 -> 126
1 + 2 + 6 = 9 (divisível por 3)
m = 7 -> 127
1 + 2 + 7 = 10 (não divisível por 3)
m = 8 -> 128
1 + 2 + 8 = 11 (não divisível por 3)
m = 9 -> 129
1 + 2 + 9 = 12 (divisível por 3)
Espero ter ajudado, um abraço! :)
Perguntas interessantes
Ed. Física,
9 meses atrás
Matemática,
9 meses atrás
Português,
9 meses atrás
Português,
1 ano atrás
Física,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás