Quais os valores que pode assumir na função f(x) -x ao quadrado + x -12 para que f(x) >/ 0
Soluções para a tarefa
Respondido por
2
f(x) = x² + x - 12
Se queremos saber quando f(x) >= 0, temos que encontrar os pontos em que f(x)=0. Então vamos encontrar as raízes da função.
Usando Bhaskara:
x = [-b +- raiz(b² - 4ac)]/(2a)
x = [-1 +- raiz(1² - 4(1)(-12))]/(2*1)
x = [-1 +- raiz(49)]/2
x = (-1 +- 7)/2
x' = -8/2 = -4
x'' = 6/2 = 3
Agora que temos as raízes, só precisamos estudar o sinal da função:
Como a>0, então a função começa positiva, decresce até chegar em 0, fica negativa, volta para 0, e fica positiva. Ela chega em 0 nos pontos onde f(x)=0, então temos que entre as raízes ela é positiva. Portanto:
x <= -4 ou x >= 3
Veja o arquivo em anexo com o gráfico para entender melhor a ideia.
Se queremos saber quando f(x) >= 0, temos que encontrar os pontos em que f(x)=0. Então vamos encontrar as raízes da função.
Usando Bhaskara:
x = [-b +- raiz(b² - 4ac)]/(2a)
x = [-1 +- raiz(1² - 4(1)(-12))]/(2*1)
x = [-1 +- raiz(49)]/2
x = (-1 +- 7)/2
x' = -8/2 = -4
x'' = 6/2 = 3
Agora que temos as raízes, só precisamos estudar o sinal da função:
Como a>0, então a função começa positiva, decresce até chegar em 0, fica negativa, volta para 0, e fica positiva. Ela chega em 0 nos pontos onde f(x)=0, então temos que entre as raízes ela é positiva. Portanto:
x <= -4 ou x >= 3
Veja o arquivo em anexo com o gráfico para entender melhor a ideia.
Anexos:
Perguntas interessantes
Biologia,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás