(PUC) Se 2 An,2 + 50 = A2n, 2, então n é igual a:
A) 5
B) 6
C) 8
D) 10
E) 12
Soluções para a tarefa
Respondido por
2
n > 2
A_(n - 2) = (n!/(n -2)! = n(x - 1)
A_(2n, 2) = (2n)! / (2n - 2)! = 2n*(2n - 1)*(2n - 2)! / (2n - 2)! = 2n*(2n-1)
2*n(n-1) + 50 = 2n*(2n-1)
2n² - 2n + 50 = 4n² - 2n
2n² - 4n² = - 50
2n² = 50 => n² = 25 ==> n = 5, pois n > 2espero que ajude
A_(n - 2) = (n!/(n -2)! = n(x - 1)
A_(2n, 2) = (2n)! / (2n - 2)! = 2n*(2n - 1)*(2n - 2)! / (2n - 2)! = 2n*(2n-1)
2*n(n-1) + 50 = 2n*(2n-1)
2n² - 2n + 50 = 4n² - 2n
2n² - 4n² = - 50
2n² = 50 => n² = 25 ==> n = 5, pois n > 2espero que ajude
sirwess:
Esse "_" significa o quê?
Perguntas interessantes
Artes,
11 meses atrás
Matemática,
11 meses atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás