Matemática, perguntado por luisaurankar, 1 ano atrás

prove que o produto de dois numeros inteiros pares resulta em um numero inteiro par

Soluções para a tarefa

Respondido por concecareca
4
O produto de um número par por qualquer número inteiro é par. 

Se m é par, então m = 2k para algum inteiro k. Logo, o produto de m por qualquer inteiro n é mn = 2kn. Como kn é inteiro, segue-se que mn é par.

Respondido por solkarped
4

✅ Após desenvolver toda a demonstração algébrica, concluímos que o produto de dois números pares resulta sempre em um número:

                                    \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf Par\:\:\:}}\end{gathered}$}

Seja a proposição:

    "O produto de dois números pares é sempre par."

Para provarmos esta proposição devemos utilizar o processo algébrico.

Reescrevendo a referida proposição na forma "se/então", temos:

      \Large\displaystyle\text{$\begin{gathered}\underbrace{Se\:x\:\acute{e}\:par\:e\:y\:\acute{e}\:par}_{\bf hip\acute{o}se},\:\underbrace{ent\tilde{a}o\:x\cdot y\:\acute{e}\:par.}_{\bf tese} \end{gathered}$}

Se:

                  \Large\displaystyle\text{$\begin{gathered}x\:\acute{e}\:par\Longrightarrow \exists\lambda\in\mathbb{Z}\:|\:x = 2\lambda \end{gathered}$}

E, se:

                   \Large\displaystyle\text{$\begin{gathered}y\:\acute{e}\:par\Longrightarrow \exists\gamma\in\mathbb{Z}\:|\:y = 2\gamma \end{gathered}$}

Desta forma, podemos dizer que:

\Large\displaystyle\text{$\begin{gathered}\bf(I) \end{gathered}$}                 \Large\displaystyle\text{$\begin{gathered}x\cdot y = 2\lambda\cdot2\gamma \end{gathered}$}

                                \Large\displaystyle\text{$\begin{gathered}= 4\lambda\gamma \end{gathered}$}

                                \Large\displaystyle\text{$\begin{gathered}= 2(2\lambda\gamma) \end{gathered}$}

Portanto:

\Large\displaystyle\text{$\begin{gathered}\bf(II) \end{gathered}$}               \Large\displaystyle\text{$\begin{gathered}x\cdot y = 2\cdot\underbrace{(2\lambda \gamma)}_{\bf k} \end{gathered}$}

Desta forma, temos que:

\Large\displaystyle\text{$\begin{gathered}\bf(III) \end{gathered}$}           \Large\displaystyle\text{$\begin{gathered}x\cdot y = 2k,\:\:\:\forall k\in\mathbb{Z} \end{gathered}$}

Como o segundo membro da equação "III" é igual ao dobro do número inteiro "k" e sabendo que o dobro de qualquer número inteiro é sempre um número par, então:

                              \Large\displaystyle\text{$\begin{gathered}x\cdot y\:\:\:\acute{e}\:\:\:par \end{gathered}$}

✅ Portanto, está provado, algebricamente, que o produto de dois números pares, sempre resultará em um número:

                                      \Large\displaystyle\text{$\begin{gathered} Par\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/5916555
  2. https://brainly.com.br/tarefa/5121584
  3. https://brainly.com.br/tarefa/8527838
  4. https://brainly.com.br/tarefa/21406329
  5. https://brainly.com.br/tarefa/16607797
  6. https://brainly.com.br/tarefa/3668647
  7. https://brainly.com.br/tarefa/28317396
  8. https://brainly.com.br/tarefa/20345206
  9. https://brainly.com.br/tarefa/1702443
  10. https://brainly.com.br/tarefa/734223
  11. https://brainly.com.br/tarefa/4722493
  12. https://brainly.com.br/tarefa/8941825
  13. https://brainly.com.br/tarefa/9161143
Anexos:
Perguntas interessantes