Matemática, perguntado por Aprendiz2015, 1 ano atrás

Problema 6.5 Sabendo-se que loga(x) = 2, logb(x) = 3 e logc(x) = 5, calcule
(a) logab (x)
(b) logabc (x)
(c) logabc (x)


Niiya: A c está igual a anterior. Deixei as outras prováveis opções para a c, mas caso não seja nenhuma das duas, por favor, comente!
Aprendiz2015: é log ab/c (x) desculpa digitei errado errado mesmo, mas muito obrigado =)
Aprendiz2015: é o sono vou dormir, vlws
Niiya: Ah sim! É só fazer log(ab/c)(x) = 1 / (log(x)(ab/c) = 1 / (log(x)(a) + log(x)(b) = log(x)(c))
Niiya: Desculpe não ter editado
Niiya: log(x)(a) + log(x)(b) - log(x)(c) ***

Soluções para a tarefa

Respondido por Niiya
12
Propriedade usada (vem da mudança de base)

\boxed{\boxed{log_{b}(a)=\dfrac{1}{log_{a}(b)}}}
_______________________________________

log_{a}(x)=2~~~\therefore~~~log_{x}(a)=\dfrac{1}{2}\\\\\\log_{b}(x)=3~~~\therefore~~~log_{x}(b)=\dfrac{1}{3}\\\\\\log_{c}(x)=5~~~\therefore~~~log_{x}(c)=\dfrac{1}{5}
__________________________

Letra A:

log_{ab}(x)=\dfrac{1}{log_{x}(ab)}\\\\\\log_{ab}(x)=\dfrac{1}{log_{x}(a)+log_{x}(b)}\\\\\\log_{ab}(x)=\dfrac{1}{(\frac{1}{2})+(\frac{1}{3})}\\\\\\log_{ab}(x)=\dfrac{1}{(\frac{3+2}{3\cdot2})}\\\\\\log_{ab}(x)=\dfrac{1}{(\frac{5}{6})}\\\\\\\boxed{\boxed{log_{ab}(x)=\dfrac{6}{5}}}
____________

Letra B:

log_{abc}(x)=\dfrac{1}{log_{x}(abc)}\\\\\\log_{abc}(x)=\dfrac{1}{log_{x}(a)+log_{x}(b)+log_{x}(c)}\\\\\\log_{abc}(x)=\dfrac{1}{(\frac{1}{2})+(\frac{1}{3})+(\frac{1}{5})}\\\\\\log_{abc}(x)=\dfrac{1}{(\frac{15}{30})+(\frac{10}{30})+(\frac{6}{30})}\\\\\\log_{abc}(x)=\dfrac{1}{(\frac{31}{30})}\\\\\\\boxed{\boxed{log_{abc}(x)=\dfrac{30}{31}}}
____________

Letra C:

log_{bc}(x)=\dfrac{1}{log_{x}(bc)}\\\\\\log_{bc}(x)=\dfrac{1}{log_{x}(b)+log_{x}(c)}\\\\\\log_{bc}(x)=\dfrac{1}{(\frac{1}{3})+(\frac{1}{5})}\\\\\\log_{bc}(x)=\dfrac{1}{(\frac{8}{15})}\\\\\\\boxed{\boxed{log_{bc}(x)=\dfrac{15}{8}}}

ou:

log_{ac}(x)=\dfrac{1}{log_{x}(ac)}\\\\\\log_{ac}(x)=\dfrac{1}{log_{x}(a)+log_{x}(c)}\\\\\\log_{ac}(x)=\dfrac{1}{(\frac{1}{2})+(\frac{1}{5})}\\\\\\log_{ac}(x)=\dfrac{1}{(\frac{7}{10})}\\\\\\\boxed{\boxed{log_{ac}(x)=\dfrac{10}{7}}}
Perguntas interessantes