preciso muito da resolução deste exercicio.
Inegral definida
Anexos:
![](https://pt-static.z-dn.net/files/d25/bde2871de95f356fc0cb7e817f10165d.png)
Soluções para a tarefa
Respondido por
0
Faremos a integral por parte e o macete do teorema é o seguinte:
Repetir o Primeiro Termo · Integral do Segundo Termo - ∫ Repetir a Integral Feita do Segundo Termo · Derivada do Primeiro Termo dx
![\displaystyle \int^{\pi}_{0} x \cdot \sin(x) \, dx \\ \\ \\ x \cdot -\cos(x) - \int -\cos(x) \cdot 1 \, dx \\ \\ \\ -x \cdot \cos(x) + \int \cos(x) \, dx \\ \\ \\ -x \cdot \cos(x) + \sin(x) \, \bigg ]^{\pi}_{0} \\ \\ \\ \bigg( - \pi \cdot \cos(\pi) + \sin(\pi) \bigg) -\bigg( -0 \cdot \cos(0) + \sin(0) \bigg) \\ \\ \\\boxed{\boxed{ A = \pi \, \, u.a }} \displaystyle \int^{\pi}_{0} x \cdot \sin(x) \, dx \\ \\ \\ x \cdot -\cos(x) - \int -\cos(x) \cdot 1 \, dx \\ \\ \\ -x \cdot \cos(x) + \int \cos(x) \, dx \\ \\ \\ -x \cdot \cos(x) + \sin(x) \, \bigg ]^{\pi}_{0} \\ \\ \\ \bigg( - \pi \cdot \cos(\pi) + \sin(\pi) \bigg) -\bigg( -0 \cdot \cos(0) + \sin(0) \bigg) \\ \\ \\\boxed{\boxed{ A = \pi \, \, u.a }}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cint%5E%7B%5Cpi%7D_%7B0%7D+x+%5Ccdot+%5Csin%28x%29+%5C%2C+dx+%5C%5C+%5C%5C+%5C%5C+x+%5Ccdot+-%5Ccos%28x%29+-+%5Cint+-%5Ccos%28x%29+%5Ccdot+1+%5C%2C+dx+%5C%5C+%5C%5C+%5C%5C+-x+%5Ccdot+%5Ccos%28x%29+%2B+%5Cint+%5Ccos%28x%29+%5C%2C+dx+%5C%5C+%5C%5C+%5C%5C+-x+%5Ccdot+%5Ccos%28x%29+%2B+%5Csin%28x%29+%5C%2C+%5Cbigg+%5D%5E%7B%5Cpi%7D_%7B0%7D+%5C%5C+%5C%5C+%5C%5C+%5Cbigg%28+-+%5Cpi+%5Ccdot+%5Ccos%28%5Cpi%29+%2B+%5Csin%28%5Cpi%29+%5Cbigg%29+-%5Cbigg%28+-0+%5Ccdot+%5Ccos%280%29+%2B+%5Csin%280%29+%5Cbigg%29+%5C%5C+%5C%5C+%5C%5C%5Cboxed%7B%5Cboxed%7B++A+%3D++%5Cpi+%5C%2C+%5C%2C+u.a+%7D%7D)
Repetir o Primeiro Termo · Integral do Segundo Termo - ∫ Repetir a Integral Feita do Segundo Termo · Derivada do Primeiro Termo dx
Perguntas interessantes