Preciso de ajuda URGENTE aqui:
Algumas empresas de processamento de óleo de cozinha, vendiam seus produtos em latas com formato de paralelepípedo. Mais tarde passaram a utilizar latas com formato de cilindro e atualmente a grande maioria utiliza frascos de plástico, num formato que lembra um cilindro. O que eu pergunto é: Porque aquelas empresas que se utilizavam de latas com a forma de paralelepípedo passaram a utilizar latas com o formato de cilindro? Justifique matematicamente, expressando numericamente, sua resposta. Para sua resposta, leve em consideração que a quantidade de óleo se manteve inalterada durante este processo.
Soluções para a tarefa
Para entender o problema, precisamos comparar os volumes de cada embalagem. Os volumes de um paralelepípedo e de um cilindro são dados por:
Vp = blh
Vc = πr²h
onde b é o comprimento, l é a largura, h a altura, e r o raio do cilindro.
Note que o volume deve ser o mesmo para as duas, então:
blh = πr²h
Vamos dar valores para as variáveis, considerando π = 3 e r = 2 cm, então devemos ter, por exemplo, b = 2 cm e l = 6 cm para obter o mesmo volume, h pode ser igual a 10 cm. Assim, o volume delas é o mesmo e vale 120 cm³.
Na produção das embalagens, leva-se em conta a área superficial da embalagem. A área superficial para o paralelepípedo será:
Ap = 2bl + 2bh + 2lh
Ap = 2(bl+bh+lh)
Ac = 2*πr² + 2πrh
Ac = 2π(r² + rh)
Substituindo os valores:
Ap = 2(2*6 + 2*10 + 6*10)
Ap = 184 cm²
Ac = 2π(2² + 2*10)
Ac = 144 cm²
Note que a área superficial do cilindro é menor, portanto, gasta-se menos material para produzi-la e isso é mais vantajoso para as empresas.