Matemática, perguntado por Vanesa001, 9 meses atrás

Por favor me ajudem!
a) \:  \: E =   \frac{1}{2}  \times  log_{6}256  + 3 \times  log_{6}9  + 2 \times  log_{6}12 \\  \\
b) \: E =  log_{9}125 \times  log_{8}7 \times  log_{5}64 \times  log_{49}81

Soluções para a tarefa

Respondido por victorhugo1362
1

Explicação passo-a-passo:

a)

E = \frac{1}{2} \times log_{6}256 + 3 \times log_{6}9 + 2 \times log_{6}12

E =  log_{6}(256 {}^{ \frac{1}{2} } ) +  log_{6}( {9}^{3} ) +  log_{6}(12 {}^{2} )

E =  log_{6}(256 {}^{ \frac{1}{2} } \times  {9}^{3} \times  {12}^{2}   )

E =  log_{6}(144 \times 256 {}^{ \frac{1}{2} } \times 729 )

E =  log_{6}(104976 \times 256 {}^{ \frac{1}{2} } )

E =  log_{6}(104976 \times (2 {}^{8} )  {}^{ \frac{1}{2} } )

E =  log_{6}(104976 \times 2 {}^{4} )

E =  log_{6}(104976 \times 16)

E =  log_{6}(1679616)

E =  log_{6}(6 {}^{8} )

E = 8

b)

E = log_{9}125 \times log_{8}7 \times log_{5}64 \times log_{49}81

E =  log_{3 {}^{2} }(5 {}^{3} )  log_{2 {}^{3} }(7)  log_{5}(2 {}^{6} )  log_{7 {}^{2} }(3 {}^{4} )

E =  \frac{3}{2} \times   log_{3}(5)   \frac{1}{3}   \times  log_{2}(7) 6 log_{5}(2)  log_{7}(3)

E =  log_{3}(5)  log_{2}(7)  \times 6 log_{5}(2)  log_{7}( 3)

E =  \frac{ log_{7}(5) }{ log_{7}(3) }  \times  log_{2}(7)  \times 6 log_{5}(2)  log_{7}(3)

E =  log_{7}(5)  log_{2}(7)  \times 6 log_{5}(2)

E =  \frac{ log_{2}(5) }{ log_{2}(7) }  \times  log_{2}(7)  \times 6 log_{5}(2)

E =  log_{2}(5) \times 6 log_{5}(2)

E = 1 \times 6

E = 6

Espero te ajudado !!!

Perguntas interessantes