Soluções para a tarefa
Respondido por
1
A questão pede para calcular a área entre as curvas
![y=\dfrac{x^{2}}{2}\;\;\text{ e }\;\;y^{2}=2x y=\dfrac{x^{2}}{2}\;\;\text{ e }\;\;y^{2}=2x](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2%7D%5C%3B%5C%3B%5Ctext%7B+e+%7D%5C%3B%5C%3By%5E%7B2%7D%3D2x)
no intervalo![0\leq x \leq 2. 0\leq x \leq 2.](https://tex.z-dn.net/?f=0%5Cleq+x+%5Cleq+2.)
Reescrevendo as curvas como funções de
no intervalo considerado:
![f(x)=\dfrac{x^{2}}{2}\;\;\text{ e }\;\;g(x)=\sqrt{2x} f(x)=\dfrac{x^{2}}{2}\;\;\text{ e }\;\;g(x)=\sqrt{2x}](https://tex.z-dn.net/?f=f%28x%29%3D%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2%7D%5C%3B%5C%3B%5Ctext%7B+e+%7D%5C%3B%5C%3Bg%28x%29%3D%5Csqrt%7B2x%7D)
Para
temos que
![g(x)\geq f(x)\\ \\ \sqrt{2x} \geq \dfrac{x^{2}}{2} g(x)\geq f(x)\\ \\ \sqrt{2x} \geq \dfrac{x^{2}}{2}](https://tex.z-dn.net/?f=g%28x%29%5Cgeq+f%28x%29%5C%5C+%5C%5C+%5Csqrt%7B2x%7D+%5Cgeq+%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2%7D)
Logo, área da região hachurada é
![A=\int_{a}^{b}{[g(x)-f(x)]\,dx}\\ \\ \\ A=\int_{0}^{2}{\left[\sqrt{2x}-\dfrac{x^{2}}{2} \right]\,dx}\\ \\ \\ A=\int_{0}^{2}{\sqrt{2}\cdot\sqrt{x}\,dx}-\int_{0}^{2}{\dfrac{x^{2}}{2}\,dx}\\ \\ \\ A=\sqrt{2}\int_{0}^{2}{x^{1/2}\,dx}-\dfrac{1}{2}\int_{0}^{2}{x^{2}\,dx}\\ \\ \\ A=\sqrt{2}\left[\dfrac{x^{(1/2)+1}}{\frac{1}{2}+1}\right]_{0}^{2}-\dfrac{1}{2}\left[\dfrac{x^{2+1}}{2+1} \right ]_{0}^{2}\\ \\ \\ A=\sqrt{2}\left[\dfrac{x^{3/2}}{(\frac{3}{2})}\right]_{0}^{2}-\dfrac{1}{2}\left[\dfrac{x^{3}}{3} \right ]_{0}^{2}\\ \\ \\ A=\sqrt{2}\cdot \dfrac{2}{3}\left[x^{3/2}\right]_{0}^{2}-\dfrac{1}{2}\cdot \dfrac{1}{3}\left[x^{3} \right ]_{0}^{2} A=\int_{a}^{b}{[g(x)-f(x)]\,dx}\\ \\ \\ A=\int_{0}^{2}{\left[\sqrt{2x}-\dfrac{x^{2}}{2} \right]\,dx}\\ \\ \\ A=\int_{0}^{2}{\sqrt{2}\cdot\sqrt{x}\,dx}-\int_{0}^{2}{\dfrac{x^{2}}{2}\,dx}\\ \\ \\ A=\sqrt{2}\int_{0}^{2}{x^{1/2}\,dx}-\dfrac{1}{2}\int_{0}^{2}{x^{2}\,dx}\\ \\ \\ A=\sqrt{2}\left[\dfrac{x^{(1/2)+1}}{\frac{1}{2}+1}\right]_{0}^{2}-\dfrac{1}{2}\left[\dfrac{x^{2+1}}{2+1} \right ]_{0}^{2}\\ \\ \\ A=\sqrt{2}\left[\dfrac{x^{3/2}}{(\frac{3}{2})}\right]_{0}^{2}-\dfrac{1}{2}\left[\dfrac{x^{3}}{3} \right ]_{0}^{2}\\ \\ \\ A=\sqrt{2}\cdot \dfrac{2}{3}\left[x^{3/2}\right]_{0}^{2}-\dfrac{1}{2}\cdot \dfrac{1}{3}\left[x^{3} \right ]_{0}^{2}](https://tex.z-dn.net/?f=A%3D%5Cint_%7Ba%7D%5E%7Bb%7D%7B%5Bg%28x%29-f%28x%29%5D%5C%2Cdx%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cint_%7B0%7D%5E%7B2%7D%7B%5Cleft%5B%5Csqrt%7B2x%7D-%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2%7D+%5Cright%5D%5C%2Cdx%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cint_%7B0%7D%5E%7B2%7D%7B%5Csqrt%7B2%7D%5Ccdot%5Csqrt%7Bx%7D%5C%2Cdx%7D-%5Cint_%7B0%7D%5E%7B2%7D%7B%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2%7D%5C%2Cdx%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Csqrt%7B2%7D%5Cint_%7B0%7D%5E%7B2%7D%7Bx%5E%7B1%2F2%7D%5C%2Cdx%7D-%5Cdfrac%7B1%7D%7B2%7D%5Cint_%7B0%7D%5E%7B2%7D%7Bx%5E%7B2%7D%5C%2Cdx%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Csqrt%7B2%7D%5Cleft%5B%5Cdfrac%7Bx%5E%7B%281%2F2%29%2B1%7D%7D%7B%5Cfrac%7B1%7D%7B2%7D%2B1%7D%5Cright%5D_%7B0%7D%5E%7B2%7D-%5Cdfrac%7B1%7D%7B2%7D%5Cleft%5B%5Cdfrac%7Bx%5E%7B2%2B1%7D%7D%7B2%2B1%7D+%5Cright+%5D_%7B0%7D%5E%7B2%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Csqrt%7B2%7D%5Cleft%5B%5Cdfrac%7Bx%5E%7B3%2F2%7D%7D%7B%28%5Cfrac%7B3%7D%7B2%7D%29%7D%5Cright%5D_%7B0%7D%5E%7B2%7D-%5Cdfrac%7B1%7D%7B2%7D%5Cleft%5B%5Cdfrac%7Bx%5E%7B3%7D%7D%7B3%7D+%5Cright+%5D_%7B0%7D%5E%7B2%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Csqrt%7B2%7D%5Ccdot+%5Cdfrac%7B2%7D%7B3%7D%5Cleft%5Bx%5E%7B3%2F2%7D%5Cright%5D_%7B0%7D%5E%7B2%7D-%5Cdfrac%7B1%7D%7B2%7D%5Ccdot+%5Cdfrac%7B1%7D%7B3%7D%5Cleft%5Bx%5E%7B3%7D+%5Cright+%5D_%7B0%7D%5E%7B2%7D)
![A=\dfrac{2\sqrt{2}}{3}\left[x^{3/2}\right]_{0}^{2}-\dfrac{1}{6}\left[x^{3} \right ]_{0}^{2}\\ \\ \\ A=\dfrac{2\sqrt{2}}{3}\left[\sqrt{x^{3}}\right]_{0}^{2}-\dfrac{1}{6}\left[x^{3} \right ]_{0}^{2}\\ \\ \\ A=\dfrac{2\sqrt{2}}{3}\left[\sqrt{2^{3}}-\sqrt{0^{3}}\right]-\dfrac{1} {6}\left[2^{3}-0^{3} \right ]\\ \\ \\ A=\dfrac{2\sqrt{2}}{3}\left[\sqrt{2^{2}\cdot 2}-0\right]-\dfrac{1}{6}\left[8-0 \right ]\\ \\ \\ A=\dfrac{2\sqrt{2}}{3}\left[\sqrt{2^{2}}\cdot \sqrt{2}\right]-\dfrac{1}{6}\left[8 \right ]\\ \\ \\ A=\dfrac{2\sqrt{2}}{3}\left[2\sqrt{2}\right]-\dfrac{8}{6}\\ \\ \\ A=\dfrac{8}{3}-\dfrac{4}{3}\\ \\ \\ A=\dfrac{4}{3}\text{ u.a.} A=\dfrac{2\sqrt{2}}{3}\left[x^{3/2}\right]_{0}^{2}-\dfrac{1}{6}\left[x^{3} \right ]_{0}^{2}\\ \\ \\ A=\dfrac{2\sqrt{2}}{3}\left[\sqrt{x^{3}}\right]_{0}^{2}-\dfrac{1}{6}\left[x^{3} \right ]_{0}^{2}\\ \\ \\ A=\dfrac{2\sqrt{2}}{3}\left[\sqrt{2^{3}}-\sqrt{0^{3}}\right]-\dfrac{1} {6}\left[2^{3}-0^{3} \right ]\\ \\ \\ A=\dfrac{2\sqrt{2}}{3}\left[\sqrt{2^{2}\cdot 2}-0\right]-\dfrac{1}{6}\left[8-0 \right ]\\ \\ \\ A=\dfrac{2\sqrt{2}}{3}\left[\sqrt{2^{2}}\cdot \sqrt{2}\right]-\dfrac{1}{6}\left[8 \right ]\\ \\ \\ A=\dfrac{2\sqrt{2}}{3}\left[2\sqrt{2}\right]-\dfrac{8}{6}\\ \\ \\ A=\dfrac{8}{3}-\dfrac{4}{3}\\ \\ \\ A=\dfrac{4}{3}\text{ u.a.}](https://tex.z-dn.net/?f=A%3D%5Cdfrac%7B2%5Csqrt%7B2%7D%7D%7B3%7D%5Cleft%5Bx%5E%7B3%2F2%7D%5Cright%5D_%7B0%7D%5E%7B2%7D-%5Cdfrac%7B1%7D%7B6%7D%5Cleft%5Bx%5E%7B3%7D+%5Cright+%5D_%7B0%7D%5E%7B2%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cdfrac%7B2%5Csqrt%7B2%7D%7D%7B3%7D%5Cleft%5B%5Csqrt%7Bx%5E%7B3%7D%7D%5Cright%5D_%7B0%7D%5E%7B2%7D-%5Cdfrac%7B1%7D%7B6%7D%5Cleft%5Bx%5E%7B3%7D+%5Cright+%5D_%7B0%7D%5E%7B2%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cdfrac%7B2%5Csqrt%7B2%7D%7D%7B3%7D%5Cleft%5B%5Csqrt%7B2%5E%7B3%7D%7D-%5Csqrt%7B0%5E%7B3%7D%7D%5Cright%5D-%5Cdfrac%7B1%7D+%7B6%7D%5Cleft%5B2%5E%7B3%7D-0%5E%7B3%7D+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cdfrac%7B2%5Csqrt%7B2%7D%7D%7B3%7D%5Cleft%5B%5Csqrt%7B2%5E%7B2%7D%5Ccdot+2%7D-0%5Cright%5D-%5Cdfrac%7B1%7D%7B6%7D%5Cleft%5B8-0+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cdfrac%7B2%5Csqrt%7B2%7D%7D%7B3%7D%5Cleft%5B%5Csqrt%7B2%5E%7B2%7D%7D%5Ccdot+%5Csqrt%7B2%7D%5Cright%5D-%5Cdfrac%7B1%7D%7B6%7D%5Cleft%5B8+%5Cright+%5D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cdfrac%7B2%5Csqrt%7B2%7D%7D%7B3%7D%5Cleft%5B2%5Csqrt%7B2%7D%5Cright%5D-%5Cdfrac%7B8%7D%7B6%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cdfrac%7B8%7D%7B3%7D-%5Cdfrac%7B4%7D%7B3%7D%5C%5C+%5C%5C+%5C%5C+A%3D%5Cdfrac%7B4%7D%7B3%7D%5Ctext%7B+u.a.%7D)
Resposta: 2ª alternativa:![4/3. 4/3.](https://tex.z-dn.net/?f=4%2F3.)
no intervalo
Reescrevendo as curvas como funções de
Para
Logo, área da região hachurada é
Resposta: 2ª alternativa:
Respondido por
1
Perguntas interessantes
História,
1 ano atrás
Geografia,
1 ano atrás
Sociologia,
1 ano atrás
Física,
1 ano atrás
Biologia,
1 ano atrás