Matemática, perguntado por alexandreguimaraes1, 6 meses atrás

Podem me ajudar na 3??? PorFavor

Anexos:

Soluções para a tarefa

Respondido por pedropda
0

a)

3^{x+3} = \frac{1}{81}

3^{x+3} = 3^{-4}

x + 3 = -4

x = -4 - 3

x = -7

b)

8^{3x+1} = 64

8^{3x+1} = 8^2

3x + 1 = 2

3x = 2 - 1

3x = 1

x = 1/3

c)

81^{x-2} = \sqrt[4]{27}

81^{x-2} = 27^{\frac{1}{4}}

(3^4)^{x-2} = (3^3)^{\frac{1}{4} }

3^{4{x-8}} = 3^\frac{3}{4}

4x - 8 = 3/4

4x = 0,75 + 8

4x = 8,75

x = \frac{8,75}{4}

x = 2,1875

d)

\sqrt{16^{x+1}} = \sqrt[4]{64}

16^{\frac{x+1}{2}} = 64^{\frac{1}{4}}

(2^4)^{\frac{x+1}{2}} = (2^6)^{\frac{1}{4}}

2^{\frac{4x+4}{2}} = 2^{\frac{3}{2}}

\frac{4x+4}{2} = \frac{3}{2} *(2)

4x + 4 = 3

4x = 3 - 4

4x = -1

x = -\frac{1}4}  ou -0,25

e)

\sqrt{5^x}   * 25^{x+1} = (0,2)^{1-x}

5^\frac{x}{2}    * (5^2)^{x+1} = (5^{-1})^{1-x}

5^\frac{x}{2}    * 5^{2x+2} = 5^{-1+x}

\frac{x}{2} + 2x + 2 = -1 + x

\frac{x}{2} + 2x -x = -1 -2

\frac{x}{2} + x = -3 (2)

x + 2x = -6

3x = -6

x = \frac{-6}{3}

x = -2

f)

\sqrt[5]{2^x} * \sqrt[3]{4^x} = \sqrt{8^{-x}}

\sqrt[5]{2^x} * \sqrt[3]{(2^2)^x} = \sqrt{(2^3)^{-x}}

2^{\frac{x}{5}}  * \sqrt[3]{2^{2x}} = \sqrt{2^{-3x}}

2^{\frac{x}{5}}  * 2^{\frac{2x}{3}}  = 2^{\frac{-3x}{2}}

\frac{x}{5} + \frac{2x}{3} = \frac{-3x}{2}

mmc(5, 3, 2) = 30

\frac{6x}{30} + \frac{20x}{30} = \frac{-45x}{30}

6x + 20x = -45x

26x + 45x = 0

71x = 0

x = 0

g)

(\frac{2}{5})^{x+3} = (\frac{125}{8})^{x-1} * (0,4)^{2x-3}

(\frac{2}{5})^{x+3} = (\frac{5}{2})^{3*{(x-1)}} * (\frac{2}{5} )^{2x-3}

(\frac{2}{5})^{x+3} = (\frac{2}{5})^{(-1)*3*{(x-1)}} * (\frac{2}{5} )^{2x-3}

(\frac{2}{5})^{x+3} = (\frac{2}{5})^{-3x+3} * (\frac{2}{5} )^{2x-3}

x+3 = -3x + 3 + 2x - 3

x + 3x - 2x = 3 - 3 - 3

2x = -3

x = -\frac{3}{2}

h)

(\frac{1}{27})^{-x}  * (3^{3x})^2 = (\frac{1}{3})^{x-1}

(\frac{1}{3^3})^{-x}  * 3^{6x} = (3^{-1})^{x-1}

(\frac{1}{3})^{-3x}  * 3^{6x} = 3^{-x+1}

(3^{-1})^{-3x}  * 3^{6x} = 3^{-x+1}

3^{3x}  * 3^{6x} = 3^{-x+1}

3x + 6x = -x + 1

9x + x = 1

10x = 1

x = \frac{1}{10}

Perguntas interessantes