Pense no seguinte:
Uma pessoa decide juntar dinheiro com a seguinte estratégia:
• No primeiro mês guarda R$ 0,50.
1 . No segundo mês guarda R$ 1,00.
• No terceiro mês guarda R$ 2,00.
• No quarto mês guarda R$ 4,00.
. E assim por diante.
Agora responda:
a. No final de um ano, quantos reais essa pessoa teria juntado?
6. No final de 18 meses, quantos reais essa pessoa teria juntado?
Soluções para a tarefa
Problema de PG.
Vamos usar esta fórmula:
Sn = a1 x ( q^n - 1 ) / (q - 1 )
a1 = primeiro termo
q = razão
n = número de temos
Sn = soma do termos
=================
1° mês = R$ 0,50
2° mês = R$ 1,00
3° mês = R$ 2,00
•••
Perceba que a a cada mês o valor
é dobrado. Já encontramos nossa
razão que é igual a q = 2.
a1 = 0,50 ( é o primeiro)
No final de um ano... quantos teremos?
1ano = 12meses// n = 12
Então:
Sn = a1 × (q^n - 1)/(q-1)
Sn = 0,5 × (2^12 - 1)/(2-1)
Sn = 0,5 × (4096 -1) / 1
Sn = 0,5 × 4095
Sn = 2.047,5
Ou seja , ela ajuntou R$ 2.047,50 (Essa
é a resposta da primeira pergunta)
A segunda pergunta faz parte do
mesmo processo da anterior. Portanto,
não usarei explicações. O que só muda
é que agora são 18 meses, isto é , n =18.
Sn = a1 × (q^n - 1 )/(q - 1)
Sn = 0,5 ×(2^18-1)/(2-1)
Sn = 0,5 × (262144-1)/1
Sn = 0,5 × 262143
Sn = 131.071,5
Ou seja , R$ 131.071,50 (Resposta da
segunda).
Resposta:
Explicação passo-a-passo:
O link do meu professor respondendo
https://youtu.be/oi15_783E3s