passo-a-passo de equações logaritmicas
calcule x
log ^ (2x-1)= 4
3
log ( x-7) + log (x-1) = 2
3 3
log (x-3) + log (2x - 9)= log 8
3 3 3
Soluções para a tarefa
Respondido por
1
Propriedades usadas:
![log_{b}(a)=c <=> b^{c}=a log_{b}(a)=c <=> b^{c}=a](https://tex.z-dn.net/?f=log_%7Bb%7D%28a%29%3Dc+%26lt%3B%3D%26gt%3B+b%5E%7Bc%7D%3Da)
![log_{b}(x)+log_{b}(y)<=>log_{b}(x*y) log_{b}(x)+log_{b}(y)<=>log_{b}(x*y)](https://tex.z-dn.net/?f=log_%7Bb%7D%28x%29%2Blog_%7Bb%7D%28y%29%26lt%3B%3D%26gt%3Blog_%7Bb%7D%28x%2Ay%29)
![log_{b}(x)=log_{b}(y)<=>x=y log_{b}(x)=log_{b}(y)<=>x=y](https://tex.z-dn.net/?f=log_%7Bb%7D%28x%29%3Dlog_%7Bb%7D%28y%29%26lt%3B%3D%26gt%3Bx%3Dy)
____________________
![log_{3}(2x-1)=4 log_{3}(2x-1)=4](https://tex.z-dn.net/?f=log_%7B3%7D%282x-1%29%3D4)
![3^{4}=2x-1 3^{4}=2x-1](https://tex.z-dn.net/?f=3%5E%7B4%7D%3D2x-1)
![2x-1=81 2x-1=81](https://tex.z-dn.net/?f=2x-1%3D81)
![2x=81+1 2x=81+1](https://tex.z-dn.net/?f=2x%3D81%2B1)
![2x=82 2x=82](https://tex.z-dn.net/?f=2x%3D82)
![x=82/2 x=82/2](https://tex.z-dn.net/?f=x%3D82%2F2)
![\boxed{\boxed{x=41}} \boxed{\boxed{x=41}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7Bx%3D41%7D%7D)
____________________
![log_{3}(x-7)+log_{3}(x-1)=2 log_{3}(x-7)+log_{3}(x-1)=2](https://tex.z-dn.net/?f=log_%7B3%7D%28x-7%29%2Blog_%7B3%7D%28x-1%29%3D2)
![log_{3}[(x-7)*(x-1)]=2 log_{3}[(x-7)*(x-1)]=2](https://tex.z-dn.net/?f=log_%7B3%7D%5B%28x-7%29%2A%28x-1%29%5D%3D2)
![log_{3}(x^{2}-x-7x+7)=2 log_{3}(x^{2}-x-7x+7)=2](https://tex.z-dn.net/?f=log_%7B3%7D%28x%5E%7B2%7D-x-7x%2B7%29%3D2)
![log_{3}(x^{2}-8x+7)=2 log_{3}(x^{2}-8x+7)=2](https://tex.z-dn.net/?f=log_%7B3%7D%28x%5E%7B2%7D-8x%2B7%29%3D2)
![3^{2}=x^{2}-8x+7 3^{2}=x^{2}-8x+7](https://tex.z-dn.net/?f=3%5E%7B2%7D%3Dx%5E%7B2%7D-8x%2B7)
![x^{2}-8x+7=9 x^{2}-8x+7=9](https://tex.z-dn.net/?f=x%5E%7B2%7D-8x%2B7%3D9)
![x^{2}-8x+7-9=0 x^{2}-8x+7-9=0](https://tex.z-dn.net/?f=x%5E%7B2%7D-8x%2B7-9%3D0)
![x^{2}-8x-2=0 x^{2}-8x-2=0](https://tex.z-dn.net/?f=x%5E%7B2%7D-8x-2%3D0)
![\Delta=b^{2}-4*a*c \Delta=b^{2}-4*a*c](https://tex.z-dn.net/?f=%5CDelta%3Db%5E%7B2%7D-4%2Aa%2Ac)
![\Delta=(-8)^{2}-4*1*(-2) \Delta=(-8)^{2}-4*1*(-2)](https://tex.z-dn.net/?f=%5CDelta%3D%28-8%29%5E%7B2%7D-4%2A1%2A%28-2%29)
![\Delta=64+8 \Delta=64+8](https://tex.z-dn.net/?f=%5CDelta%3D64%2B8)
![\Delta=72 \Delta=72](https://tex.z-dn.net/?f=%5CDelta%3D72)
![\sqrt{\Delta}= \sqrt{72} \sqrt{\Delta}= \sqrt{72}](https://tex.z-dn.net/?f=%5Csqrt%7B%5CDelta%7D%3D+%5Csqrt%7B72%7D++)
![\sqrt{\Delta}=\sqrt{36*2} \\ \sqrt{\Delta}=\sqrt{36}*\sqrt{2} \sqrt{\Delta}=\sqrt{36*2} \\ \sqrt{\Delta}=\sqrt{36}*\sqrt{2}](https://tex.z-dn.net/?f=%5Csqrt%7B%5CDelta%7D%3D%5Csqrt%7B36%2A2%7D+%5C%5C+%5Csqrt%7B%5CDelta%7D%3D%5Csqrt%7B36%7D%2A%5Csqrt%7B2%7D)
![\sqrt{\Delta}=6*\sqrt{2}\\ \sqrt{\Delta}=6\sqrt{2} \sqrt{\Delta}=6*\sqrt{2}\\ \sqrt{\Delta}=6\sqrt{2}](https://tex.z-dn.net/?f=%5Csqrt%7B%5CDelta%7D%3D6%2A%5Csqrt%7B2%7D%5C%5C+%5Csqrt%7B%5CDelta%7D%3D6%5Csqrt%7B2%7D)
![x=(-b\pm\sqrt{\Delta})/2a x=(-b\pm\sqrt{\Delta})/2a](https://tex.z-dn.net/?f=x%3D%28-b%5Cpm%5Csqrt%7B%5CDelta%7D%29%2F2a)
![x=(-[-8]\pm6\sqrt{2})/(2*1) x=(-[-8]\pm6\sqrt{2})/(2*1)](https://tex.z-dn.net/?f=x%3D%28-%5B-8%5D%5Cpm6%5Csqrt%7B2%7D%29%2F%282%2A1%29)
![x=(8\pm6\sqrt{2})/2 x=(8\pm6\sqrt{2})/2](https://tex.z-dn.net/?f=x%3D%288%5Cpm6%5Csqrt%7B2%7D%29%2F2)
![x=2*(4\pm3\sqrt{2})/2 x=2*(4\pm3\sqrt{2})/2](https://tex.z-dn.net/?f=x%3D2%2A%284%5Cpm3%5Csqrt%7B2%7D%29%2F2)
![x=4\pm3\sqrt{2} x=4\pm3\sqrt{2}](https://tex.z-dn.net/?f=x%3D4%5Cpm3%5Csqrt%7B2%7D)
![x'=4+3\sqrt{2} x'=4+3\sqrt{2}](https://tex.z-dn.net/?f=x%27%3D4%2B3%5Csqrt%7B2%7D)
![x''=4-3\sqrt{2} x''=4-3\sqrt{2}](https://tex.z-dn.net/?f=x%27%27%3D4-3%5Csqrt%7B2%7D)
Não podemos considerar x'', pois ele faria com que os logaritmandos ficassem negativos, e isso é contra às condições de existência dos logaritmos
![\boxed{\boxed{x=4+3\sqrt{2}}} \boxed{\boxed{x=4+3\sqrt{2}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7Bx%3D4%2B3%5Csqrt%7B2%7D%7D%7D)
____________________
![log_{3}(x-3)+log_{3}(2x-9)=log_{3}(8) log_{3}(x-3)+log_{3}(2x-9)=log_{3}(8)](https://tex.z-dn.net/?f=log_%7B3%7D%28x-3%29%2Blog_%7B3%7D%282x-9%29%3Dlog_%7B3%7D%288%29)
![log_{3}[(x-3)*(2x-9)]=log_{3}(8) log_{3}[(x-3)*(2x-9)]=log_{3}(8)](https://tex.z-dn.net/?f=log_%7B3%7D%5B%28x-3%29%2A%282x-9%29%5D%3Dlog_%7B3%7D%288%29)
![log_{3}(2x^{2}-9x-6x+27)=log_{3}(8) log_{3}(2x^{2}-9x-6x+27)=log_{3}(8)](https://tex.z-dn.net/?f=log_%7B3%7D%282x%5E%7B2%7D-9x-6x%2B27%29%3Dlog_%7B3%7D%288%29)
![log_{3}(2x^{2}-15x+27)=log_{3}(8) log_{3}(2x^{2}-15x+27)=log_{3}(8)](https://tex.z-dn.net/?f=log_%7B3%7D%282x%5E%7B2%7D-15x%2B27%29%3Dlog_%7B3%7D%288%29)
![2x^{2}-15x+27=8 2x^{2}-15x+27=8](https://tex.z-dn.net/?f=2x%5E%7B2%7D-15x%2B27%3D8)
![2x^{2}-15x+27-8=0 2x^{2}-15x+27-8=0](https://tex.z-dn.net/?f=2x%5E%7B2%7D-15x%2B27-8%3D0)
![2x^{2}-15x+19=0 2x^{2}-15x+19=0](https://tex.z-dn.net/?f=2x%5E%7B2%7D-15x%2B19%3D0)
![\Delta=(-15)^{2}-4*2*19 \\ \Delta=225-152 \\ \Delta=73 \Delta=(-15)^{2}-4*2*19 \\ \Delta=225-152 \\ \Delta=73](https://tex.z-dn.net/?f=%5CDelta%3D%28-15%29%5E%7B2%7D-4%2A2%2A19+%5C%5C+%5CDelta%3D225-152+%5C%5C+%5CDelta%3D73)
![x=(-[-15]\pm\sqrt{73})/(2*2) x=(-[-15]\pm\sqrt{73})/(2*2)](https://tex.z-dn.net/?f=x%3D%28-%5B-15%5D%5Cpm%5Csqrt%7B73%7D%29%2F%282%2A2%29)
![x=(15\pm\sqrt{73})/4 x=(15\pm\sqrt{73})/4](https://tex.z-dn.net/?f=x%3D%2815%5Cpm%5Csqrt%7B73%7D%29%2F4)
![x'=(15+\sqrt{73})/4 x'=(15+\sqrt{73})/4](https://tex.z-dn.net/?f=x%27%3D%2815%2B%5Csqrt%7B73%7D%29%2F4)
![x''=(15-\sqrt{73})/4 x''=(15-\sqrt{73})/4](https://tex.z-dn.net/?f=x%27%27%3D%2815-%5Csqrt%7B73%7D%29%2F4)
O x'' deixaria o primeiro logaritmando negativo, logo descarte-o
![\boxed{\boxed{x=(15+\sqrt{73})/4}} \boxed{\boxed{x=(15+\sqrt{73})/4}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7Bx%3D%2815%2B%5Csqrt%7B73%7D%29%2F4%7D%7D)
____________________
____________________
Não podemos considerar x'', pois ele faria com que os logaritmandos ficassem negativos, e isso é contra às condições de existência dos logaritmos
____________________
O x'' deixaria o primeiro logaritmando negativo, logo descarte-o
Perguntas interessantes
ENEM,
1 ano atrás
Geografia,
1 ano atrás
Biologia,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás