Para que uma função seja contínua em um ponto x=k de seu domínio, é necessário que exista o \lim_(x->1)f(x) e este limite coincide com o valor da função em k, ou seja
f(x) é continua em k<=>\lim_(x->1)f(x)=f(k).
Se f(x)=(2x^(2)-5x-3)/(x-3) para x!=3 e f(3)=k, determine k de modo que f seja continua em 3.
Soluções para a tarefa
Respondido por
2
Resposta:
O valor de f(3) deve ser igual a 7 para que f(x) seja contínua em x=3.
Explicação passo a passo:
A função f(x) está definida como:
f(x) = (2x^2 - 5x - 3) / (x-3)
Vamos supor que podemos fatorar o polinômio quadrático do numerador como abaixo:
(x-3) * (a*x+b) = a*x^2 + b*x - 3*a*x -3*b
= a*x^2 + (b-3a)*x - 3*b
Para que isso ocorra, é necessário que a e b tenham os seguintes valores:
a = 2
b = 1
Realmente é possível a fatoração, pois com esses valores de a e b:
a*x^2 + (b-3a)*x - 3*b = 2*x^2 -5*x -3 = f(x)
Então podemos reescrever, para x ≠ 3:
f(x) = [(2*x+1)*(x-3)] / (x-3)
= 2*x+1
Podemos então calcular o limite de f(x) para x->3:
Portanto o valor de k deve ser 7.
Perguntas interessantes
Geografia,
5 meses atrás
Português,
5 meses atrás
Matemática,
5 meses atrás
Música,
5 meses atrás
Matemática,
10 meses atrás
Geografia,
10 meses atrás