Os sinais utilizados nas redes neurais são propagados da entrada para a saída pela rede assumindo uma relação positiva. O treinamento dos modelos utiliza um algoritmo de aprendizagem chamado retro-propagação do erro, que consiste em corrigir os erros durante o treinamento. É preciso de um conjunto de treinamento e um conjunto de teste para o desenvolvimento das redes neurais, esses conjuntos utilizam informações de entrada e saídas, geradas mediante dados reais.
No procedimento de teste das redes neurais:
Escolha uma:
a. os dados de saída a retroalimentam e os padrões do algoritmo são obtidos de forma automática na rede neural artificial.
b. os dados de entrada a alimentam e os padrões de saída são considerados como erros obtidos por meio da rede neural artificial.
c. um conjunto de dados da camada oculta deve ser associado aos dados de entrada para a criação dos padrões de saída da rede neural artificial.
d. os dados de entrada a alimentam e os padrões de saída são comparados com os obtidos por meio da rede neural artificial.
e. ocorre a criação dos dados de entrada e a eliminação dos padrões de saída obtidos por meio da rede neural artificial.
Soluções para a tarefa
Respondido por
1
Resposta:
Explicação:
Com relação ao algoritmo de treinamento Backpropagations em redes MLP, pode-se afirmar que:
Quanto ao instante de atualização dos pesos - Se a atualização dos pesos for realizada a cada apresentação de um novo padrão, ao final de uma iteração é razoável imaginar que a atualização dos pesos corresponda mais às alterações feitas pelos últimos padrões apresentados do que aos primeiros.
Se a ordem de apresentação é a mesma a cada iteração, então a alteração será tendenciosa.
Assinale a alternativa correta.
Respondido por
0
Resposta:
Explicação:
Perguntas interessantes
Português,
10 meses atrás
Biologia,
10 meses atrás
Ed. Moral,
10 meses atrás
História,
1 ano atrás
ENEM,
1 ano atrás
Matemática,
1 ano atrás
Sociologia,
1 ano atrás
Inglês,
1 ano atrás