Matemática, perguntado por wellington7943, 1 ano atrás

os numeros reais nao nulos alfa e beta são tais que 2^alfa = 5^beta. nessas condicoes, podemos afirmar corretamente que o valor de alfa/beta é

Soluções para a tarefa

Respondido por alevini
1
\mathsf{2^\alpha=5^\beta}

\mathsf{2^{\dfrac{\alpha}{\beta}}=5}

\mathsf{\log{2^{\dfrac{\alpha}{\beta}}}=\log5}

\mathsf{\dfrac{\alpha}{\beta}\log2=\log5}

\mathsf{\dfrac{\alpha}{\beta}=\dfrac{\log5}{\log2}}

\mathsf{\dfrac{\alpha}{\beta}=\dfrac{\log{\dfrac{10}{2}}}{\log2}}

\mathsf{\dfrac{\alpha}{\beta}=\dfrac{\log{10}-\log2}{\log2}}

\boxed{\mathsf{\log2\approx0,3}}

\mathsf{\dfrac{\alpha}{\beta}\simeq\dfrac{1-0,3}{0,3}}

\boxed{\mathsf{\dfrac{\alpha}{\beta}\simeq2,\overline{3}}}
Respondido por albertrieben
0
Boa noite Wellington

2^α  = 5^β

α*log(2) = β*log(5) 

α/β = log(5)/log(2) = (1 - log(2)/(log(2) = (1 - 0.3)/0.3 = 0.7/0.3 = 7/3 

.

.
Perguntas interessantes