obtenha a forma mais simples da expressão a-1 sobre a+1 + 1 sobre a ao quadrado -1+ a+1 sobre a-1 e determine seu valor numérico para a=3
Soluções para a tarefa
Respondido por
2
a-1/a+1 + 1/a² -1+a + 1/a-1
2/4+(1/9)-4+(1/2)
(1/2)+(1/9)-(4/1)+(1/2)
agora simplifica somando elas
2/4+(1/9)-4+(1/2)
(1/2)+(1/9)-(4/1)+(1/2)
agora simplifica somando elas
Respondido por
5
vamos lá...
![\frac{a-1}{a+1} + \frac{1}{a^2-1} + \frac{a+1}{a-1} = \\ \\ \frac{a-1}{a+1} + \frac{1}{(a+1)(a-1)} + \frac{a+1}{a-1} = \\ \\ mmc=(a+1)(a-1) \\ \\ \frac{(a-1)(a-1)+1+(a+1)(a+1)}{(a+1)(a-1)} = \\ \\ \frac{a^2-\not2a+1+1+a^2+\not2a+1}{(a+1)(a-1)} = \\ \\ \frac{2a^2+3}{(a+1(a-1)} = \\ \\ para~~a=3 \\ \\ \frac{2.(3)^2+3}{(3+1)(3-1)} = \frac{2(9)+3}{(4)(2)} = \frac{18+3}{8} =\fbox{$ \frac{21}{8} $} \frac{a-1}{a+1} + \frac{1}{a^2-1} + \frac{a+1}{a-1} = \\ \\ \frac{a-1}{a+1} + \frac{1}{(a+1)(a-1)} + \frac{a+1}{a-1} = \\ \\ mmc=(a+1)(a-1) \\ \\ \frac{(a-1)(a-1)+1+(a+1)(a+1)}{(a+1)(a-1)} = \\ \\ \frac{a^2-\not2a+1+1+a^2+\not2a+1}{(a+1)(a-1)} = \\ \\ \frac{2a^2+3}{(a+1(a-1)} = \\ \\ para~~a=3 \\ \\ \frac{2.(3)^2+3}{(3+1)(3-1)} = \frac{2(9)+3}{(4)(2)} = \frac{18+3}{8} =\fbox{$ \frac{21}{8} $}](https://tex.z-dn.net/?f=+%5Cfrac%7Ba-1%7D%7Ba%2B1%7D+%2B+%5Cfrac%7B1%7D%7Ba%5E2-1%7D+%2B+%5Cfrac%7Ba%2B1%7D%7Ba-1%7D+%3D+%5C%5C++%5C%5C++%5Cfrac%7Ba-1%7D%7Ba%2B1%7D+%2B+%5Cfrac%7B1%7D%7B%28a%2B1%29%28a-1%29%7D+%2B+%5Cfrac%7Ba%2B1%7D%7Ba-1%7D+%3D+%5C%5C++%5C%5C+mmc%3D%28a%2B1%29%28a-1%29+%5C%5C++%5C%5C++%5Cfrac%7B%28a-1%29%28a-1%29%2B1%2B%28a%2B1%29%28a%2B1%29%7D%7B%28a%2B1%29%28a-1%29%7D+%3D++%5C%5C++%5C%5C++%5Cfrac%7Ba%5E2-%5Cnot2a%2B1%2B1%2Ba%5E2%2B%5Cnot2a%2B1%7D%7B%28a%2B1%29%28a-1%29%7D+%3D+%5C%5C++%5C%5C+++%5Cfrac%7B2a%5E2%2B3%7D%7B%28a%2B1%28a-1%29%7D+%3D+%5C%5C++%5C%5C+para%7E%7Ea%3D3+%5C%5C++%5C%5C++%5Cfrac%7B2.%283%29%5E2%2B3%7D%7B%283%2B1%29%283-1%29%7D+%3D+%5Cfrac%7B2%289%29%2B3%7D%7B%284%29%282%29%7D+%3D+%5Cfrac%7B18%2B3%7D%7B8%7D+%3D%5Cfbox%7B%24+%5Cfrac%7B21%7D%7B8%7D+%24%7D)
Perguntas interessantes
História,
11 meses atrás
Inglês,
11 meses atrás
Matemática,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás