Matemática, perguntado por Gamerfree1177, 9 meses atrás

O valor do X na igualdade ¹⁸√712=x√7²
A) 10
B)8
C)6
D)3​

Anexos:

Soluções para a tarefa

Respondido por JJ1823
0

Resposta:

Letra D

X = 3

Explicação passo-a-passo:

Vamos usar as propriedades dos radicais:

 \sqrt{5}  =  {5}^{ \frac{1}{2} }  \\  \\  \sqrt[4]{10}  =  {10}^{ \frac{1}{4} }

Toda operação de radiciação pode ser escrita em potência como ilustrado acima.

Agora vamos aplicar essa propriedade ao problema em questão.

 \sqrt[18]{7 {}^{12} }  =  \sqrt[x]{ {7}^{2} }

 {7}^{ \frac{12}{18} }  =  {7}^{ \frac{2}{x} }

Veja que as bases são iguais.

Então vamos cancelá-las, pois a igualdades mostra que as potências representam o mesmo valor.

Assim, restará apenas os expoentes na igualdade.

 \frac{12}{18}  =  \frac{2}{x}  \\

Agora vamos simplificar as frações da esquerda por 6.

 \frac{2}{3}  =  \frac{2}{x} \:  \\

Veja que os numeradores são iguais, logo os denominadores também são iguais, pois representam a mesma fração.

Então, X = 3

Perguntas interessantes