Matemática, perguntado por oliverhktzer, 11 meses atrás

o valor do diametro de uma circunferencia e de 2 cm se este mesmo diametro sofrer um acrescimo de 2cm podemos afirmar que a area da circuferencia tera um aumento percentual de

Soluções para a tarefa

Respondido por numero20
6

A área da circunferência aumentou em 300%.

Esta questão está relacionada com a circunferência. A circunferência é uma figura geométrica que possui apenas um lado, pois toda ela é composta por um único segmento circular. Na circunferência, o raio é a medida do centro até todos os pontos de tangência e o diâmetro mede o dobro do raio.

Inicialmente, vamos calcular a área das circunferência com o diâmetro de 2 cm (raio igual a 1 cm) e com o diâmetro de 4 cm (raio igual a 2 cm). Com isso, temos o seguinte:

A=\pi \times 1^2=\pi \\ \\ A'=\pi \times 2^2=4\pi

Por fim, vamos calcular o aumento percentual da área da circunferência. Portanto, esse valor será:

\frac{4\pi-\pi}{\pi}=3=300\%

Respondido por Mari2Pi
2

Resposta:

300%

Explicação passo-a-passo:

Circunferência de diâmetro 2 cm ⇒ Raio = 1 cm

Circunf c/ diametro aumentado em + 2cm = 4 cm ⇒ Raio = 2cm

Agora calculemos as áreas:

Circunferência = π . r² ⇒ 3,14 . 1² = 3,14 cm²

Circunf. aumentada = π . r² = 3,14 . 2² = 3,14 . 4 = 12,56 cm²

Percentual de aumento = x

Valor aumentado = 12,56 - 3,14 = 9,42 cm²

Área circunf . x% = 9,42

3,14 . x / 100 = 9,42

3,14x = 9,42 . 100

3,14x = 942

x = 942 / 3,14

x = 300 %

Perguntas interessantes