Matemática, perguntado por mapdsmarcos1, 1 ano atrás

O Valor de f'(2) para f(x)=(x^2-3x).1/3 é:
Quest.: 5
-14/3
-5/3
14/3
1/3
5/3

Soluções para a tarefa

Respondido por viniciushenrique406
1
\fbox{$f(x)=\dfrac{x^2-3x}{3}$}\\\\\\\\\fbox{$f'(p)=\underset{x \to p}{\ell im}~~\dfrac{f(x)-f(p)}{x-p}$}\\\\\\\\f'(2)=\underset{x \to 2}{\ell im}~~\dfrac{\dfrac{\begin{pmatrix}x^2-3x\end{pmatrix}}{3}-\dfrac{\begin{pmatrix}2^2-3\cdot 2\end{pmatrix}}{3}}{x-2}\\\\\\\\f'(2)=\underset{x \to 2}{\ell im}~~\dfrac{\dfrac{\begin{pmatrix}x^2-3x\end{pmatrix}}{3}-\begin{pmatrix}-\dfrac{2}{3}\end{pmatrix}}{x-2}


f'(2)=\underset{x \to 2}{\ell im}~~\dfrac{\dfrac{x^2-3x}{3}+\dfrac{2}{3}}{x-2}


f'(2)=\underset{x \to 2}{\ell im}~~\dfrac{\dfrac{x^2-3x+2}{3}}{x-2}\\\\\\\\(multiplicando~e~dividindo~a~express\~ao~por~3...)\\\\\\\\f'(2)=\underset{x \to 2}{\ell im}~~\dfrac{3\cdot\hspace{-13}\diagup~~\dfrac{x^2-3x+2}{3\hspace{-6}\diagup}}{3\cdot(x-2)}\\\\\\\\f'(2)=\underset{x \to 2}{\ell im}~~\dfrac{x^2-3x+2}{3\cdot(x-2)}}~~~~(fatorando~o~numerador...)


f'(2)=\underset{x \to 2}{\ell im}~~\dfrac{(x-1)\cdot(x\hspace{-7}\diagup-2)\hspace{-11}\diagup}{3\cdot(x\hspace{-7}\diagup-2\hspace{-7}\diagup)}}\\\\\\\\f'(2)=\underset{x \to 2}{\ell im}~~\dfrac{x-1}{3}\\\\\\\\f'(2)=\underset{x \to 2}{\ell im}~~\dfrac{2-1}{3}~~\Rightarrow~~ \fbox{$\dfrac{1}{3}$}~~\checkmark







viniciushenrique406: Caso não consiga visualizar a resposta, tente abrir pelo navegador: http://brainly.com.br/tarefa/7474606
Perguntas interessantes