O valor de B = cos 240º – sen 150º – tg 135 ? c a conta pfvr
Soluções para a tarefa
O valor de B = cos(240) - sen(150) - tg(135) é igual a zero.
Vamos calcular os valores de cos(240), sen(150) e tg(135) separadamente.
Perceba que 240 - 180 = 60º.
Isso quer dizer que o valor do cosseno de 240 é igual ao valor de cosseno de 60º.
Entretanto, 240º está no terceiro quadrante. Então, o cosseno é negativo.
Logo, cos(240) = -cos(60) = -1/2.
Temos que 180 - 150 = 30º.
Então, o valor do seno de 150 é igual ao valor do seno de 30º.
Como 150º está no segundo quadrante e nesse quadrante o seno é positivo, então:
sen(150) = sen(30) = 1/2.
A tangente de 135º será igual a razão entre o seno de 135 e o cosseno de 135.
Como 180 - 135 = 45 e como 135º está no segundo quadrante, então:
sen(135) = sen(45) = √2/2
cos(135) = -cos(45) = -√2/2.
Logo, tg(135) = -1.
Assim,
B = -1/2 - 1/2 - (-1)
B = -1 + 1
B = 0.