O retângulo pqrs é representação de uma mesa de sinuca . Objetivo é alcançar a bola verde, representada pelo ponto v com a bola branca representada pelo ponto B. Sabe-se que o ângulo de incidência é igual ao ângulo de reflexão ,como destacado na figura abaixo.
Anexos:
Soluções para a tarefa
Respondido por
20
Por semelhança de triângulos encontramos um sistema, resolvendo-o obtemos o valor de x e y que são os valores necessários para se calcular a tangente do ângulo beta.
Segue em anexo foto com a resolução:
Segue em anexo foto com a resolução:
Anexos:
richardgoncalvow4uyt:
Hum... eu fiz a outra que vc postou também, tinha visto que era do colégio militar
Respondido por
6
O valor da tangente do ângulo beta é 33/37.
Note que os triângulos maiores são semelhantes ao triângulo de vértice P, então, podemos achar as medidas dos triângulos por semelhança. Sendo x o segmento em do triângulo menor em PS e y o segmento do triângulo menor em PQ, temos:
(1,5 - y)/y = 0,9/x
0,9.y = 1,5x - xy
Outra equação será:
0,35/y = (0,75 - x)/x
0,75.y - xy = 0,35.x
Montando o sistema de equação:
0,9.y - 1,5.x = -xy
0,75.y - 0,35.x = xy
Igualando as equações:
-0,9.y + 1,5.x = 0,75.y - 0,35.x
1,65.y = 1,85.x
y = 111.x/99
A tangente do ângulo pode ser calculada pela razão entre o cateto oposto e o cateto adjacente:
tg(B) = x/y
tg(B) = x/(111.x/99)
tg(B) = 99.x/111.x
tg(B) = 33/37
Leia mais em:
https://brainly.com.br/tarefa/18258906
Anexos:
Perguntas interessantes