o que é permutação, arranjos, e combinação? me ajudem!!!
Soluções para a tarefa
Respondido por
4
As principais ferramentas da Análise Combinatória são a Permutação, o Arranjo e a Combinação, mas muitos estudantes se confundem na hora de decidir qual delas utilizar para resolver um problema específico. Aqui, vamos explicar as características de cada uma e quando devem ser utilizadas.
Uma permutação de n elementos distintos é um agrupamento ordenado desses elementos. Pode ser calculada pela fórmula Pn=n!. Ela deve ser utilizada quando você quiser contar quantas possibilidades existem de se organizar um número de objetos de forma distinta, por exemplo:
O número de anagramas da palavra LIVRO é uma permutação de 5 elementos, calculada através de 5+ = 5 . 4 . 3 . 2 . 1 = 120, pois para a primeira posição você pode colocar 5 letras; para a segunda, restaram 4, para a terceira, 3 e assim por diante;
O número de filas que podem ser formadas com 25 pessoas é 25!, pois para o primeiro lugar da fila temos 25 possibilidades, para o segundo 24 e assim por diante.
Um arranjo de n elementos dispostos p a p, com p menor ou igual a n, é uma escolha de p entre esses n objetos na qual a ordem importa. Sua fórmula é dada por
A(n,p) = n! / (n - p)!
O exemplo mais clássico de arranjo é o pódio: em uma competição de 20 jogadores, quantas são as possibilidades de se formar um pódio com os três primeiros lugares? Note que, neste problema, queremos dispor 20 jogadores em 3 lugares, onde a ordem importa, afinal o pódio formado por João, por Marcos e por Pedro não é o mesmo formado por Pedro, por Marcos e por João. Outro exemplo é o número de possibilidades de se formar uma foto com n pessoas. Perceba que as permutações nada mais são do que casos particulares de arranjos onde n = p.
As Combinações de n elementos tomados p a p são escolhas não ordenadas desses elementos, calculadas por
C(n,p) = n! / p!(n-p)!
Um exemplo classico é quando queremos formar uma comissão de 3 pessoas escolhidas entre 10 pessoas. Diferentemente do pódio do exemplo anterior, uma comissão formada por João, por Pedro e por Maria é a mesma comissão formada por Maria, por Pedro e por João.
Por fim, fique com essa frase de impacto:
“Uma escolha ordenada significa escolher e colocar em ordem”
ou, matematicamente,
A = C . P
Uma permutação de n elementos distintos é um agrupamento ordenado desses elementos. Pode ser calculada pela fórmula Pn=n!. Ela deve ser utilizada quando você quiser contar quantas possibilidades existem de se organizar um número de objetos de forma distinta, por exemplo:
O número de anagramas da palavra LIVRO é uma permutação de 5 elementos, calculada através de 5+ = 5 . 4 . 3 . 2 . 1 = 120, pois para a primeira posição você pode colocar 5 letras; para a segunda, restaram 4, para a terceira, 3 e assim por diante;
O número de filas que podem ser formadas com 25 pessoas é 25!, pois para o primeiro lugar da fila temos 25 possibilidades, para o segundo 24 e assim por diante.
Um arranjo de n elementos dispostos p a p, com p menor ou igual a n, é uma escolha de p entre esses n objetos na qual a ordem importa. Sua fórmula é dada por
A(n,p) = n! / (n - p)!
O exemplo mais clássico de arranjo é o pódio: em uma competição de 20 jogadores, quantas são as possibilidades de se formar um pódio com os três primeiros lugares? Note que, neste problema, queremos dispor 20 jogadores em 3 lugares, onde a ordem importa, afinal o pódio formado por João, por Marcos e por Pedro não é o mesmo formado por Pedro, por Marcos e por João. Outro exemplo é o número de possibilidades de se formar uma foto com n pessoas. Perceba que as permutações nada mais são do que casos particulares de arranjos onde n = p.
As Combinações de n elementos tomados p a p são escolhas não ordenadas desses elementos, calculadas por
C(n,p) = n! / p!(n-p)!
Um exemplo classico é quando queremos formar uma comissão de 3 pessoas escolhidas entre 10 pessoas. Diferentemente do pódio do exemplo anterior, uma comissão formada por João, por Pedro e por Maria é a mesma comissão formada por Maria, por Pedro e por João.
Por fim, fique com essa frase de impacto:
“Uma escolha ordenada significa escolher e colocar em ordem”
ou, matematicamente,
A = C . P
j19981:
Muito obrigado! Melhor do que eu esperava! ❤
Perguntas interessantes
História,
10 meses atrás
Matemática,
10 meses atrás
Matemática,
10 meses atrás
Química,
1 ano atrás
Química,
1 ano atrás
Direito,
1 ano atrás