o que e equações biquadradas?
Soluções para a tarefa
Respondido por
6
quações biquadradas é uma equação escrita da seguinte forma geral: ax4 + bx2 + c = 0. Para resolver (encontrarmos as sua raízes) é preciso transformá-las em uma equação do segundo grau.
Para melhor compreensão veja no exemplo abaixo como essa transformação acontece e como chegamos às raízes da equação biquadrada.
y4 – 10y2 + 9 = 0 → equação biquadrada
(y2)2 – 10y2 + 9 = 0 → também pode ser escrita assim.
Substituindo variáveis: y2 = x, isso significa que onde for y2 iremos colocar x.
x2 – 10x + 9 = 0 → agora resolvemos essa equação do 2º grau encontrando x` e x``
a = 1 b = -10 c = 9
∆ = b2 – 4ac
∆ = (-10)2 – 4 . 1 . 9
∆ = 100 – 36
∆ = 64
x = - b ± √∆
2a
x = -(-10) ± √64
2 . 1
x = 10 ± 8
2
x’ = 9
x” = 1
Essas são as raízes da equação x2 – 10x + 9 = 0, para encontrarmos as raízes da equação biquadrada y4 – 10y2 + 9 = 0 devemos substituir os valores de x’ e x” em y2 = x.
Para x = 9
y2 = x
y2 = 9
y = √9
y = ± 3
Para x = 1
y2 = x
y2 = 1
y = √1
y = ±1
Portanto, a solução da equação biquadrada será:
S = {-3, -1, 1, 3}.
Para melhor compreensão veja no exemplo abaixo como essa transformação acontece e como chegamos às raízes da equação biquadrada.
y4 – 10y2 + 9 = 0 → equação biquadrada
(y2)2 – 10y2 + 9 = 0 → também pode ser escrita assim.
Substituindo variáveis: y2 = x, isso significa que onde for y2 iremos colocar x.
x2 – 10x + 9 = 0 → agora resolvemos essa equação do 2º grau encontrando x` e x``
a = 1 b = -10 c = 9
∆ = b2 – 4ac
∆ = (-10)2 – 4 . 1 . 9
∆ = 100 – 36
∆ = 64
x = - b ± √∆
2a
x = -(-10) ± √64
2 . 1
x = 10 ± 8
2
x’ = 9
x” = 1
Essas são as raízes da equação x2 – 10x + 9 = 0, para encontrarmos as raízes da equação biquadrada y4 – 10y2 + 9 = 0 devemos substituir os valores de x’ e x” em y2 = x.
Para x = 9
y2 = x
y2 = 9
y = √9
y = ± 3
Para x = 1
y2 = x
y2 = 1
y = √1
y = ±1
Portanto, a solução da equação biquadrada será:
S = {-3, -1, 1, 3}.
DanhSouza:
obg
Respondido por
2
Equação biquadrada é uma equação de quarto grau, que para achar os valores de suas raízes é preciso transformá-la em uma equação de 2º grau.
Perguntas interessantes
Matemática,
10 meses atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Química,
1 ano atrás
Matemática,
1 ano atrás