o quarto termo do desenvolvimento no binomio de Newton(x-1)elevado a 7
Soluções para a tarefa
Respondido por
26
Pelo termo geral
quarto termo .
![a=x\\ b=-1 \\ n=7 \\ p=3 a=x\\ b=-1 \\ n=7 \\ p=3](https://tex.z-dn.net/?f=a%3Dx%5C%5C++b%3D-1+%5C%5C+n%3D7+%5C%5C+p%3D3)
![T_{p+1}=T_4\\p+1=4\\p=3 T_{p+1}=T_4\\p+1=4\\p=3](https://tex.z-dn.net/?f=T_%7Bp%2B1%7D%3DT_4%5C%5Cp%2B1%3D4%5C%5Cp%3D3)
Substituindo.
![T_{p+1}=\binom{n}{p}a^{n-p}b^p T_{p+1}=\binom{n}{p}a^{n-p}b^p](https://tex.z-dn.net/?f=T_%7Bp%2B1%7D%3D%5Cbinom%7Bn%7D%7Bp%7Da%5E%7Bn-p%7Db%5Ep)
![T_4=\binom{7}{3}x^{7-3}.(-1)^3 T_4=\binom{7}{3}x^{7-3}.(-1)^3](https://tex.z-dn.net/?f=T_4%3D%5Cbinom%7B7%7D%7B3%7Dx%5E%7B7-3%7D.%28-1%29%5E3)
![T_4= \frac{7!}{3!4!} .x^4.-1 T_4= \frac{7!}{3!4!} .x^4.-1](https://tex.z-dn.net/?f=T_4%3D+%5Cfrac%7B7%21%7D%7B3%214%21%7D+.x%5E4.-1)
![\boxed{T_4=-35x^4} \boxed{T_4=-35x^4}](https://tex.z-dn.net/?f=%5Cboxed%7BT_4%3D-35x%5E4%7D)
Substituindo.
Perguntas interessantes