Matemática, perguntado por paulabelly7716, 5 meses atrás

O número de bactérias de uma cultura, t horas após o início de certo experimento, é dado pela expressão. Nessas condições, quanto tempo após o início do experimento a cultura terá 38 400 bactérias?.

Soluções para a tarefa

Respondido por lucelialuisa
0

Teremos 38.400 bactérias após 12,5 horas.

Equação exponencial

Temos que o número de bactérias ao longo do tempo é dado por uma equação exponencial, como segue:

N(t) = 1.200 . (2)^{0,4t}

Sendo que N(t) corresponde ao número total de bactérias após um período de t de horas, queremos saber em quanto tempo o número de bactérias passará a ser igual a 38.400. Substituindo isso na equação, temos que:

N(t) = 1.200 . (2)^{0,4t}

38.400 = 1.200 . (2)^{0,4t}

38.400 ÷ 1.200 = (2)^{0,4t}

32 = (2)^{0,4t}

log(32) = 0,4.t . log(2)

log(2⁵) = 0,4.t . log(2)

5 . log(2) = 0,4.t . log(2)

5 = 0,4.t

t = 5 ÷ 0,4

t = 12,5 h

Para saber mais sobre equações exponenciais:

https://brainly.com.br/tarefa/18840904

Espero ter ajudado!

Anexos:
Perguntas interessantes