o mês dezembro impulsiona as vendas por ter muito dinheiro no mercado em função do 13º salário e das férias, por isso o mercado de presentes e de beleza tem um arrecadamento muito alto. os institutos de beleza, de olho na possibilidade de altas arrecadações, estão parcelando seus tratamentos em duas vezes iguais, vencendo a cada 12 dias, sob a taxa de juros simples de 0,16% a.d.? gostaria de saber, por favor.
Soluções para a tarefa
Respondido por
11
Estamos perante uma situação de equivalência de capitais ..com o "momento zero" como ponto focal
Assim teremos
Valor Presente = [P₁/(1 + i . n₁)] + [P₂/(1 + i . n₂)]
como P₁ = P₂ ...vamos genericamente designar por apenas P
Valor Presente = [P/(1 + i . n₁)] + [P/(1 + i . n₂)]
Onde
Valor Presente = 700
P = Parcela a pagar, neste caso a determinar
i = Taxa de juro, neste caso DIARIA 0,16% ...ou 0,0016 (de 0,16/100)
n = Prazo de atualização de cada parcela, expresso em unidades da taxa, neste caso n₁ = 12/1 = 12 ..e n₂ = 24/1 = 24
resolvendo:
Valor Presente = [P/(1 + i . n₁)] + [P/(1 + i . n₁)]
700 = [P/(1 + 0,0016 . 12)] + [P/(1 + 0,0016 . 24)]
700 = [P/(1 + 0,0192)] + [P/(1 + 0,0384)]
700 = [P/(1,0192)] + [P/(1,0384)]
colocando "P" em evidencia
700 = P [1/(1,0192)] + [1/(1,0384)]
mmc(1,0192 - 1,0384) = 1,05833728
700 = P [(1,0384 + 1,0192)/1,05833728]
700 = P (2,0576/1,05833728)
700 = P . 1,944181726
700/1,944181726 = P
360,048647 = P <-- valor de cada parcela R$360,05 (valor aproximado)
Espero ter ajudado
Assim teremos
Valor Presente = [P₁/(1 + i . n₁)] + [P₂/(1 + i . n₂)]
como P₁ = P₂ ...vamos genericamente designar por apenas P
Valor Presente = [P/(1 + i . n₁)] + [P/(1 + i . n₂)]
Onde
Valor Presente = 700
P = Parcela a pagar, neste caso a determinar
i = Taxa de juro, neste caso DIARIA 0,16% ...ou 0,0016 (de 0,16/100)
n = Prazo de atualização de cada parcela, expresso em unidades da taxa, neste caso n₁ = 12/1 = 12 ..e n₂ = 24/1 = 24
resolvendo:
Valor Presente = [P/(1 + i . n₁)] + [P/(1 + i . n₁)]
700 = [P/(1 + 0,0016 . 12)] + [P/(1 + 0,0016 . 24)]
700 = [P/(1 + 0,0192)] + [P/(1 + 0,0384)]
700 = [P/(1,0192)] + [P/(1,0384)]
colocando "P" em evidencia
700 = P [1/(1,0192)] + [1/(1,0384)]
mmc(1,0192 - 1,0384) = 1,05833728
700 = P [(1,0384 + 1,0192)/1,05833728]
700 = P (2,0576/1,05833728)
700 = P . 1,944181726
700/1,944181726 = P
360,048647 = P <-- valor de cada parcela R$360,05 (valor aproximado)
Espero ter ajudado
Perguntas interessantes