O custo de fabricação de “x” unidades de um produto é C(x) = 0,1 x3 – 0,5 x2 + 300 x + 100. Usando diferencial de uma função, o custo aproximado de fabricação da 21ª unidade será de:
Soluções para a tarefa
Respondido por
0
Olá
A derivada de polinômio é dada por:
f = xⁿ
f' = n.xⁿ⁻¹
C(x) = 0,1x³ – 0,5 x² + 300 x + 100
Derivando a função
C'(x) = 3.0,1.x³⁻1 - 2.0,5.x²⁻¹ + 1.300.x¹⁻¹ + 0
C'(x) = 0,3.x² - x + 300
O enunciado pede o custo de fabricação da 21ᵃ unidade, então
para x = 21
C'(21) =0,3.(21)² - 21 + 300
C'(21) = 411,3
A derivada de polinômio é dada por:
f = xⁿ
f' = n.xⁿ⁻¹
C(x) = 0,1x³ – 0,5 x² + 300 x + 100
Derivando a função
C'(x) = 3.0,1.x³⁻1 - 2.0,5.x²⁻¹ + 1.300.x¹⁻¹ + 0
C'(x) = 0,3.x² - x + 300
O enunciado pede o custo de fabricação da 21ᵃ unidade, então
para x = 21
C'(21) =0,3.(21)² - 21 + 300
C'(21) = 411,3
Perguntas interessantes
Matemática,
8 meses atrás
Matemática,
8 meses atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Física,
1 ano atrás