Matemática, perguntado por beatrizsilva1527, 11 meses atrás

O conjunto solução da equação cos x = cos (π/3 – x ), para 0

Soluções para a tarefa

Respondido por juanbomfim22
20

O conjunto solução contém todos os arcos côngruos a π/6 e a 7π/6.

O que é conjunto solução de uma equação?

Denomina-se conjunto solução, ou somente solução, o conjunto formado por todos os valores que satisfazem uma determinada equação.

Como encontrar a solução de equações trigonométricas?

Para resolver uma equação trigonométrica, existem várias formas possíveis, variando a depender de como a equação esteja disposta. Relembre algumas das principais fórmulas, que podem ser utilizadas para encontrar outras variantes da soma e da subtração de dois arcos:

  • sen(a+b) = sen(a).cos(b) + sen(b).cos(a)
  • sen(a-b) = sen(a).cos(b) - sen(b).cos(a)
  • cos(a+b) = cos(a).cos(b) - sen(a).sen(b)
  • cos(a-b) = cos(a).cos(b) + sen(a).sen(b)

Como resolver a questão?

Primeiro devemos lembrar dos senos, cossenos e tangentes dos ângulos notáveis (30, 45, 60°). Depois, aplicamos a fórmula do cosseno da subtração de dois arcos, sabendo que 60° = π/3 radianos.

cos(π/3 - x) = cos(π/3).cos(x) + sen(π/3).sen(x)

                   = cos(60°).cos(x) + sen(60°).sen(x)

                   = cos(x)/2 + √3.sen(x)/2

                   = [cos(x) + √3.sen(x)]/2

Agora, podemos substituir na equação original.

cos x = cos (π/3 – x) ⇔

cos(x) = [cos(x) + √3.sen(x)]/2

2.cos(x) = cos(x) + √3.sen(x)

cos(x) =√3.sen(x)

1/√3 = sen(x)/cos(x)

tg(x) = 1/√3

tg(x) = √3/3

Um dos ângulo-solução é bem conhecido, ele é π/6 radianos (30°), que corresponde à tangente de 30° = √3/3. Porém, como a tangente está definida em todos os reais, o conjunto solução abrange todos os ângulos cuja tangente é √3/3.

No primeiro quadrante, por exemplo, π/6 e 7π/6 são soluções (lembre-se dos sinais da tangente e dos arcos côngruos). Portanto,

\boxed{S = \left\{x \in \mathbb{R}~|~x = \tfrac{\pi}{6}+k.\pi,~k\in\mathbb{Z}\right \}}

Leia mais sobre trigonometria em:

  • https://brainly.com.br/tarefa/10532832
Anexos:
Perguntas interessantes